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The drag of a compressible turbulent boundary layer 
on a smooth flat plate with and without heat transfer 

By D. B. SPALDING AND S. W. CHI 
Mechanical Engineering Department, 

Imperial College of Science and Technolo,gy, London, S.W. 7 

(Received 10 May 1963) 

The theoretical treatments given by earlier authors are classified, reviewed and 
where necessary extended; then the predictions of twenty of these theories are 
evaluated and compared with all available experimental data, the root-mean- 
square error being computed for each theory. The theory of van Driest-I1 gives 
the lowest root-mean-square error (1 1.0 %). 

A new calculation procedure is developed from the postulate that a unique 
relation exists between cfFc and RF, where cf is the drag coefficient, R is the 
Reynolds number, and F, and FR are functions of Mach number and temperature 
ratio alone. The experimental data are found to be too scanty for both F, and FR 
to be deduced empirically, so F, is calculated by means of mixing-length theory 
and FR is found semi-empirically. Tables and charts of values of F, and FR are 
presented for a wide range of M, and %ITG. When compared with all experi- 
mental data, the predictions of the new procedure give a root-mean-square error 
of 9.9 yo. 
1. Introduction 

In  many circumstances of interest to aeronautical engineers, it is necessary to 
predict the frictional drag a t  a surface along which a gas is flowing at high speed 
and through which heat is being transferred. This is not only important in the 
prediction of the frictional drag itself but also in the prediction of the heat 
transfer, for example by means of a ‘modified Reynolds analogy’. This know- 
ledge is required in connexion with many processes, for example, in the cooling of 
combustion-chamber walls, gas-turbine blades, hypersonic ram-jet intakes, 
rocket-motor nozzles and high-speed aircraft skins. 

Often the velocity of the mainstream fluid is not uniform. In  a rocket-nozzle 
it increases with distance downstream, whilst in a ram-jet intake it decreases; 
the main-stream pressure is accordingly non-uniform. Despite these facts, it  is 
necessary to restrict attention in the present paper mainly to the case in which 
the pressure gradient is zero; that is, to that of the boundary layer on a flat plate. 
The reason is that this is the simplest case, which must be understood first. 

There have been numerous investigations of the problem, both theoretical and 
experimental; these will be described in some detail in the following $32, 3. 
Nevertheless, as will appear below, present knowledge of the subject is defective 
in two respects. First, there is considerable uncertainty as to which of various 
theories gives the best prediction; for each theory contains fairly drastic simplifi- 
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cations, and has usually been compared with only a small selection of the avail- 
able experimental data. Secondly, some of the methods of prediction (including 
unfortunately those which give the most accurate predictions) are difficuIt to 
use; the prospective user of the method has to carry out extensive numerical 
work, because the necessary auxiliary functions have not been computed and 
tabulated once for all. 

It is intended below to pay particular attention to remedying the above 
defects. As far as possible, uncertainty will be eliminated by comparing the 
existing theories with all published experimental data and by developing a new 
calculation procedure based upon accumulated theoretical and experimental 
knowledge of the compressible turbulent boundary layer; and graphs and tables 
will be presented which permit friction to be calculated for a wide range of condi- 
tions as a result of merely a few minutes' work. 

The tables cover Mach numbers (M,) between 0 and 15, and ratios of wall 
temperature to main-stream temperature ( %ITG) between 0.05 and 30. 

Sections 3 and 3 below are mainly devoted to areview of earlier work. These lead 
to a development of the present method which is presented in $4. Readers solely 
concerned with the use of the method should turn to $4.6 which contains a 
summary of the prediction procedures which are recommended for use. 

Notution 

see equations (13) and (14) 
local frictional drag coefficients based upon main-stream fluid properties, 
equation (17) 

overall frictional drag coefficient based upon main-stream fluid pro- 
perties, equation (26) 

a constant, equation (2) 
function multiplying cf in universal drag law, equations ( 1  1) and (19) 
function multiplying Cf in universal drag law, equation (1 1)  
function multiplying R, in universal drag law, equations (12) and (20) 
function multiplying R, in universal drag law, equations (1  2) and (25) 
specific enthalpy, equation (32), (B.Th.U./lb.) 
stagnation enthalpy, equation (32), (B.Th.U./lb.) 
a constant (x 0.4), equation (2) 
Mach number of main stream, equation (13) 
exponents, equations (44) and (51) 
Prandtl number, equation (36) 
recovery factor, equation (35) 
Reynolds number based upon momentum thickness and main-stream 
fluid properties, equation (3) 

Reynolds number based upon x and main-stream fluid properties, 
equation (21) 

temperature, equation (13), (OR) 
velocity in x-direction, equation ( l ) ,  (ft./h) 
distance measured along main-stream direction from effective start of 
turbulent boundary layer, implied in the definition of Rx, (ft.) 
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non-dimensional value of u, equation ( 2 )  
distance from wall, equation ( l ) ,  (ft.) 
non-dimensional value of y ,  equation ( 2 )  
a different non-dimensional value of u, equation ( 2 )  
momentum thickness, equation (3), (ft.) 
specific heat ratio, equation (13) 
function appearing in equations (3 ) ,  ( 5 ) ,  etc. 
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functions appearing in the generalized drag laws, equations (18), (34)  

density, equation ( l ) ,  (lb./ft.3) 
viscosity, equation (3), (Ib./ft.h) 
shear stress in boundary layer, equation ( l ) ,  (lb./ft. h2) 

and (27) 

Subscripts 

average conditions in laminar sublayer 
main-stream fluid state, equation ( 2 )  
uniform property flow, equation (43) 
state near the wall, equation (43) 
state at  the wall, equation ( 2 )  
outer edge of laminar sublayer, table 1 

2. Survey of previous theoretical work 
2.1. General characteristics of analyses 

There are a number of theories for the prediction of the frictional-drag coefficient 
in the compressible turbulent boundary layer on a smooth flat plate (see the 
references marked with an asterisk in the list at  the end of the paper). According 
to the nature of the principal assumptions used by various authors, the theories 
can be grouped into five types, namely, (i) theories based upon the Prandtl 
differential equation, (ii) theories based upon the von KBrmBn differential 
equation, (iii) theories based upon other differential equations, (iv) theories 
based upon a fixed velocity profile, and (v) theories based upon the incompressible 
formulae with fluid properties inserted at a ‘reference’ state. The main features 
of the analyses for each of those groups will be summarized in the following five 
sections ($5 2.2-2.6), and the characteristics of individual theories belonging to 
these groups will be indicated in tables 1-5. Table 6 includes miscellaneous 
analyses which do not belong to any of the five groups mentioned above. 

2.2.  Theories based upon the Prandtl differential equation 

By ‘the Prandtl differential equation’ we mean that postulated by Prandtl (see 
Schlichting 1960, p. 477) relating the shear stress in the turbulent part of the 
boundary layer to the velocity gradient and other properties, namely 

7 = pKy2 ($) . 
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With the assumption r = rs, the velocity distribution in the turbulent boundary 
layer is derived, 

y+ = E-l exp ( K u &  1; S d x ) ,  (2) 

where yf = y(rsps)*/,us, U+ = ul(rslps)~, z = u/uG, Q = (p/ps)*, h- = a mixing 
length constant, E = an integrating constant, and subscript G refers to the main 
stream, i.e. the outer 'edge' of the boundary layer, subscript S refers to the fluid 
conditions immediately adjacent to the wall, i.e. to the inner 'edge' of the 
boundary layer." 

Equation (2) leads to the integral for R,: 

where 

The above features are common to all analyses of this group. The differences 
between them are in either: (i) an hypothesis for E (or other method of deter- 
mining the integration constant), (ii) the nature of the Q function, or (iii) the 
method of evaluating the R, integral. Accordingly, the individual members of 
the group are distinguished by the nature of these three items in table 1. 

2.3. Theories based upon the von K4rm4n differential equation 

The differential equation postulated by von KhrmAn (see Schlichting 1960, 
p. 485) as the connexion between i-, duldy and other quantities is 

7 = ph'2(du/dy)4/(d2u/dy2)2. (4) 

The assumption i- = rS leads to the velocity distribution 

y+ = ( K / E )  1" 0 exp (Ku& 1: S d z )  d u f  

This leads further to the R, integral 

Equations (4)-(6) are common to all the methods of this group; individual 
methods are classified in table 2 by reference to either (i) their hypotheses for E ,  
(ii) the nature of the Q function, or (iii) the method of evaluating the R, integral. 

2.4. Theories based upon other differential equations 

Analyses of this group start from various differential equations but the assump- 
tion of r = rs is also made as in the above two groups (552.2, 2.3). Generally 
speaking, all proposed differential equations lead to equations for the velocity 
distribution which are identical in form with (2) or (5). However, the nature of (9 
in this expression differs from that in $5 2.2 and 2.3, that is, Q here is no longer 

* A mnemonic: G gas stream; S surface. 
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equal to (p/ps)*. The Reynolds-number integral for the analyses of the group is 

or 

depending on whether the velocity distribution of (2) or that of ( 5 )  is appropriate. 
Methods of this group are distinguished in table 3 by reference to either (i) the 
nature of the differential equation, or (ii) the method of evaluating the R, 
integral. 

In  this group, it is assumed that the velocity profile is independent of com- 
pressibility, for example, y+ = ( K ~ + ) ,  

for which the R, integral becomes 

2.5. Theories based upon aJixed velocity proJile 

(9) 

Methods of this group are distinguished in table 4 by reference to (i) the assumed 
fixed velocity profile, (ii) the expression for PIPs, and (iii) the method of evaluat- 
ing the R, integral. 

2.6. Theories based upon incompressible formulae with 
reference pro9erties 

Methods of this group imply the existence of a universal relationship between 
frictional-drag coefficient and Reynolds number, if properties are evaluated at 
a reference temperature (or reference enthalpy). They are distinguished in 
table 5 by reference to (i) the method by which the reference temperature was 
determined, and (ii) the expression for TR/TG or (hR/hG). 

2.7. Misceliansous other methods 

Methods which do not belong to those groups discussed in §$ 2.2-2.6 include the 
use of various transformations and the direct use of empirical data. We have 
placed in this category the theories of Lin & Shen (1951), Shen (1951), Donaldson 
(1952), Spence (1959), Winkler (1961), Burgraff (1962) and Coles (1962). 

The validity of the assumptions and simplifications involved in various 
theories can only be verified by comparison with experiment. This will be done 
systematically in the next section. 

3. Comparison between the theoretically and experimentally obtained 
data 3.1. Purpose of comparison 

As pointed out above, all theoretical treatments discussed in $ 2  have been based 
upon assumptions and simplifications. Further , their predictions differ signifi- 
cantly, as has been shown, for example, by Chapman & Kester (1953) for the 
adiabatic-wall case. It is therefore necessary to establish the relative validity of 
all theories by comparing them with experimental data. Other authors, for 
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example, Rubesin, Maydew & Varga (1951), Sommer & Short (1955), Monaghan 
(1950), Matting, Chapman, Nyholm & Thomas (1961), Winkler (1961) and 
Peterson (1963) have compared some theories with experiments; but they either 
used relatively few sets of experimental data or used a qualitative method of 
comparison in the form of numerous figures, so their conclusions are still rather 
indecisive. We shall compare the various theories with all published experi- 
mental data of cf and Cf versus R, and R, at various MG and Ts/TG, and shall 
evaluate for each theory a quantitative measure of its agreement withexperiment. 
After that, we shall be able to see which of the available theories is best, and so 
learn which assumptions for the compressible turbulent boundary layer are most 
plausible. This examination forms the starting point for the development of an 
improved calculation procedure, which is also presented below. 

3.2. Experimental data 

If experimental data were accurate, a few sets of data at desired conditions 
(Mach number and heat-transfer rates) would sufice to test the validity of the 
various theories. Such data are, however, not available. For this reason, the 
greatest possible number of experimental data have been collected (see references 
marked with a double dagger) and tabulated.* They include measurements 011 

a flat plate and on a cylinder with axis parallel to the stream direction and radius 
large in comparison with the boundary-layer thickness. Figures 1-3 show the 
collected data in the form of cf vs R,, cf vz)s R, and Cf vs R,, and figure 4 shows the 
conditions (i.e. values of MG and T,/T,) which have been explored experimentally. 
Although it must be expected that the data are not all equally reliable, we have 
made no attempt to estimate their accuracy or to introduce any corresponding 
weighting factors. 

3.3. Theoretical data 

Theoretical friction-coefficient data corresponding to the experimental Reynolds 
number (R, or Rz), Mach number (M,) and temperature ratio (T,/T,) have been 
obtained by the various methods discussed in $ 2 ;  however, some authors have 
not worked out all the relations which are required if their theories are to be 
compared with all the collected experimental data. Extensions can, however, be 
made to those theories without conflicting with the authors' original argument. 
The methods used by us in making the extensions are summarized below. 

Conversion of R, to R, and vice versa. The results of some analyses, viz. Clemmow 
(1950), Cope (1943), Monaghan (1950), Smith & Harrop (1946), Van Driest (1950, 
1955), Wilson (1950) and the theories of table 5 ,  imply that a unique relation 
exists between cf F, and RFR where F, and FR are functions of Mach number and 
temperature ratio alone. As will be shown in $4 ,  the relations between F,, Fc, FR, 
and FRs are such that F, = FE, (11) 

FRs = FRSilk"c, (12) 
where and &'are the functions of MG and TsITG multiplying cf and Cf respec- 
tively, and FBs and FRz are the functions of MG and TSITG multiplying R6 and R,, 

* The table is not printed here. Copies may be obtained by interested readers on 
application to  the authors. 
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respectively. Hence equations (11) and (12) enable the determination of the 
cfvs R, relation of one of these theories from the corresponding C,vs R, or 
cf vs R, relations, and vice versa. 

5.. 

(-1 

5 .  
8 ~ 1 0 ~  lo3 1 0 4  2 x 1 0 4  

RL? 
FIGURE 1. Collected experimental data of cf ws 22, in compressible turbulent 

boundary layer. x , adiabatic; 0,  with heat transfer. 

10-3 

10 

10-4 
3 .  105 106 10’ 

R, 

FIGURE 2. Collected experimental data of cf us R, in compressible turbulent 
boundary layer. x , adiabatic; 0 ,  with heat transfer. 

Extension of theories derived for the adiabatic wall to the case of heat transfer. 
When only the adiabatic-wall case is considered and the Reynolds analogy 
between momentum and energy transfer is assumed, as in the theories of Cope 
(1943), Donaldson (1952), Wilson (1950), etc., the temperature-distribution 
wpitiion is 
where 

T/T, = 1 - a29, 

a2 = [+(y - 1) X&]/( 1 + +(y - 1)M& 
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10-2 

- 
Cf 

10-3 
4 x  105 1 06 107 4 x  10' 

R, 
FIGURE 3. Collected experimental data of F f  t7s R, in compressible turbulent 

boundary layer. x , adiabatic ; 0 ,  with heat transfer. 

FIGURE 4. Area of conditions explored experimentally. 

z = u/uG, T = absolute temperature (OR), and suffixes G and S refer to free 
stream and surface, respectively. 

We have extended equation (13)  to include the eEect of heat transfer as 

(14) 
follows: TITS = 1 + bz - ~ 2 . ~ 2 ,  

where b = + iH7 - 1 )  JC3/(Ts/TG41- 1 

and a2 = M Y  - W f ~ ~ / ( W T G ) .  
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Viscosity law. The viscosity law recommended by the original authors has been 
used in most cases for applying their theory to experimental conditions. When 
this is not possible, or no law is recommended, the following power law has been 
used ,u cc (15) 
Although Sutherland's viscosity law, given by 

P - T TG+ 198"R _ _ _  
p, T, T+ 198 OR- 

Monaghan (1950) 
6 

Equation (IS), T, = 200' K 

quation (IS), T, = 300' R 5 

4 
D 

-3 
2 

von KBrmPn (1935) 
3 

2 

1 
0 2 4 6 10 

T,P* 
FIGURE 5. Comparison of various viscosity-temperature laws. 

is more accurate than the power law, the absolute value of TG was not reported 
by most experimenters. Figure 5 shows the viscosity-temperature relations used 
in the various theories. Since ,u has only a weak influence on cf, it  is unlikely that 
the use of different viscosity laws for different theories has any appreciable effect 
on our final conclusions. 

Drag laws for incompressible $ow. Each of the authors whose works we have 
studied incorporates in his theory, implicitly or explicitly, a relationship between 
drag coefficient and Reynolds number (either R, or R,) valid for incompressible 
flow. We have in each case used the relationship recommended by the author in 
question, without attempting to calculate separately its effect on the accuracy 
of the theory. However, in the Reynolds-number range of the experiments, the 
drag coefficients calculated from the various formulae differ only by 1 or 2 %, so 
there is no reason to expect that the use of a single relationship would have 
appreciably modified our final conclusion. 

3.4. Comparison between theories and experiments 
Twenty out of twenty-nine collected theories (see references marked with an 
asterisk) are compared in this report; they are believed to include all the essential 
assumptions used by various authors. Nine theories (theories which have been 
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compared are listed in table 6) are not included, either because they still have 
indeterminate constants or because they involve lengthy time-consuming 
numerical work which is believed not to be profitable a t  the present state of 
knowledge of turbulence. 

The criterion used for comparison is the root-mean-square of 

fcf, exp - cf, th)lCf, th, 

where cj, exp is the experimental local or overall friction coefficient and cj, th is the 
theoretical local or overall friction coefficient*, the corresponding experimental 
Reynolds number (A’, or Ex), Mach number (MG) and temperature ratio (Ts/TG). 
In evaluating the above root-mean-square value for each of 20 theories, all the 
experimental data of Appendix A (plotted in figures 1-3) have been used. 

The evaluation of the root-mean-square values of (cf, exp - cf, th) /c f ,  th was 
carried out by the Mercury digital computer of London University. A computer 
program was written for each of the twenty theories. Then each theory was 
applied to each of the 491 experimental conditions for which cf,,,, data were 
available, yielding appropriate values of cf, th. The root-mean-square value of 
(cj, exp - cf, th)/cf, th was then computed for each theory in an obvious manner. 

The results of the comparison are shown in table 6. They give a quantitative 
indication of the accuracy of the various theories when compared with present 
empirical knowledge of the compressible turbulent boundary layer. 

It is seen from table 6 that the three best theories are those of van Driest-I1 
(1955), Wilson (1950) extended by us, and Kutateladze & Leont’ev (1961). They 
are all based upon the mixing-length theory used in the method of $3 2.2 or 2.3, 
that is, tables 1 or 2. Table 6 also reveals that all theories exhibit a greater error 
when compared with the data for finite heat-transfer rates than when compared 
with data obtained under adiabatic conditions. 

4. Development of an improved calculation procedure 
4.1. Fundamental functions 

We first seek a relation between cf and R,. For the constant-pressure boundary 
layer, we may expect that 

‘f = cf(R87 TS/TG)* (17 )  

The nature of the function can be determined either theoretically ( $ 2 )  or 
experimentally. 

Now many of the theoretical expressions, viz. theories of Clemniow-I & I1 
(1950), Cope-I1 (1943), Monaghan (1950), Smith & Harrop (1946), van Driest-I 
& I1 (1951, 1955), Spence (1959), Wilson (1950), Winkler (1961) and table 5 can 
be written in the form 

(18) &f Fc = $8(R8 FR6), 

where the function is independent of Mach number and temperature ratio, the 

* For the sake of simplicity, here and on some other occasions, c j  stands for both 
c, and F, ,  as is clear in the text. 

9 Fluid Mech. 18 
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effects of which are wholly accounted for by the functions F, and FB8. The latter 
functions are such that 

D. B. Xpalding and S.  W .  Chi 

4 = e ( M G ,  TS/TG), 

= 1, for J I G  = 0, Ts/Tc = 1; (19) 

= 1, for MG = 0, T y / T G  = 1. (30)  

FR8 = FRS(MG) TS/TG), 

Some of the other theoretical expressions, for example, those of Kutateladze & 
Leont'ev (1961)) and Burgraff (1962)) if expressed in the form of equation (18), 
would imply that FR6 exhibits a weak dependence on cf; however, this is by no 
means certain, as is shown by our comparison between theories and experiments 
(table 6) and we shall ignore this dependence. 

2 2  10' 103 104  3 n  104 

R, 
FIGURE G .  Comparison of equation (28) with uniform-property data, ci US Rp 

Secondly, we will consider the relation between cf and 11,. The integral 
momentum equation for the boundary layer on a flat plate (see Schlichting 1960, 
p. 536) leads to 

Rewriting equation (21) in integral form, we obtain 

-$Cf = dR,/dR,. (91) 

R, = IOE6 (2/cf) dR,. 

By multiplication of equation ( 2 2 )  by FRs/Fc, there is obtained 

We have already postulated the existence of a unique relation between cfFc and 
R,FR8 in equation (18), which is independent of Mach number and temperature 
ratio. With this, equation (23) yields 

* C f 4  = 7b,(R,FRzL (24) 
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where the function $z is independent of Mach number and temperature ratio, 
c. and FRa are the same functions as those of equations (19) and (20), and FRx is 
related to FRs and F, by 

FRx = F12S/& 

= 1, for &IG = 0, TSITG = 1. ( 2 5 )  

Finally, consider E f  as a function of R,. From the definition of Cf, 
'I& 

QCf = (Rz)-l J (CfP,dR,, 
0 

i t  can be shown by the method of the preceding paragraph that 

( 2 6 )  

4 E f l $  = &RxFRx), (27) 

where the function '$ is again independent of Mach number and temperature 
ratio, and F, and FR, are defined by equations (19) and (25).  

To summarize, it  has been shown that, if FRs is independent of &cf, the following 

(18) 
functions exist, 

Q C f 8  = $S(FRsm 
&fq = 7kJTRxRxL (24) 

$ C f q .  = F(FRxRx), (27 )  

where $,, 7kX and 3 are independent of Mach number and temperature ratio. 
Now analytic functions exist which adequately represent the relations between 
&cf and R,, &cf and R,, and +Ef and R,, in uniform-density flow (Spalding 1962a), 
namely* R - l  - F ( ~ G )  + 2  + (KE)-1 [{I - (2/Ku&)}exp (Ku&) + (2/Ku$) + 1 

- ~ K U Z  12 - + z ( ~ u &  )3 - A ( K ~ &  )4 - i ~ b ( ~ u &  )51, (28) 

- x u &  - + z ( ~ ~ & ) 4 - + c ( ~ t C ~ ) 5  - ~ ~ ( ~ ~ ~ ) 6 - - ~ ~ ( h r ~ c f ) 7 1 ,  (2:))  

+Cf = Rs/R,, (30) 

R, = +z(uC+)2 + (K3E)-' [{6 - Ku& + ( K U & ) ~ )  exp (Ku& ) - 6 

where u& = (Sicf)*, K = 0.4 and E = 12.  
Figures 6, 7 and 8 show the comparison between the above three functions, 

equations (28), (29) and (30), and the incompressible turbulent boundary-layer 
experimental data from those references marked with a dagger. The agreement 
is good throughout the whole range of Reynolds number; indeed the values of 
E and K have been chosen so as to give a minimum value of root-mean-square 
error in a manner similar to that described above, Chi (1962).-f Now, our problem 
reduces t o  the determination of F, and FRs as functions of Mach number and 
temperature ratio. 

4.2. Determination of the F,-function 

Since the functions are known [equations (28), (29) and (30)], and 
since numerous data for compressible turbulent boundary layers [references 
marked with a double dagger] have been collected, i t  might seem to be possible 

* These are of course not the only equations which may be used ; and they are certainly 
not the simplest. They are used because they are consistent with a formula for the universal 
velocity profile which is both simple and in good agreement with experimental data. 

9-3 

$,, and 

t On a cf basis, the root-mean-square error would be about 2 yo. 
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to deduce the F, and FR6 functions solely from experiment. An attempt to do 
this, however, soon showed that the data were too scanty and inaccurate to allow 
success. Some theoretical guidance is therefore sought for the determination of 
one of the functions. F, is the obvious choice. 

In  $ 3 ,  it was shown that theories based upon the mixing-length hypothesis 
of tables 1 and 2 gave the best prediction of all the previous theories; i t  was also 
discovered that the corresponding methods lead to the following expression 
for F, 

The expression for FRI, by contrast, varies considerably from one theory to the 
next. Equation (31) has been adopted for the F, function in the present theory. 

10 

Cf 

10 

-2 

- 3  

105 106 lo7 lo8 109 

R.l! 

FIGURE 7. Comparison of equation (29) with uniform-property dat’a, cf vs R,. 

- 
Cf 

1 0 - ~  
lo5 lo7 108 lo9 

R, 

FIGURE 8. Comparison of equat’ion (30) wit’h uniform-property data, us R,. 

Evaluation of F, from equation (31) requires the density to be expressed as a 
function of z ,  where zis defined as uIuG. This relationship may be derived from the 
Reynolds analogy between energy and momentum transfer, modified for non- 
unity Prandtl number in the following manner. 

From the Reynolds analogy, we have 

where h* is the stagnation enthalpy, ‘u is the velocity in the x- direction, subscripts 
G and S refer to the main stream and the fluid adjacent to the wall, respectively. 
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NOW us = 0, hO = c(T+Q(y- 1)M$TGz2) for a perfect gas, hi  = h, = cTs, 
where c is the specific heat at constant pressure, and T is the temperature in 
degrees absolute. Equation (32) can then be written as 

T/TG = (T,/TG) + ( 1 +  +(y-  1)JfZ- (T,/TG)}z-+(y- 1) M ~ z ' .  (33) 

For the adiabatic-wall case, the coefficient of x of equation (33) is zero, and T, is 
equal to the adiabatic-wall temperature, Tad, ,. Hence 

(34) 

(35) 

where r is the recovery factor. For gases of P x 0.7, measurements of recovery 
factor by various investigators, Brevoort & Arabian (1958), Brinich (1961), 
Kaye (1954), Hilton (1951), Slack (1952) and Stalder, Rubesin & Tendeland 
(1950), showed that the value of recovery factor lies between 0.88 and 0.9; 0.89 
is a fair mean of all measurements. Now equation (33) can be modified to satisfy 
the boundary condition at the wall for the adiabatic-wall case, by writing 

TIT, = (Ts/TG) + (1 + +r(y- 1 )  J f i -  (T,/TG)}z- +r(y- 1) &@z2, (36) 

Tad,s/TG = 1 ++(y- 1)M,2. 

T,,s/TG = 1 +&(y- l)MZ, 

This holds for a Prandtl number of unity. For non-unity Prandtl number, 

where r = 0.89 for P N" 0.7. For an ideal gas at  constant pressure, 

p/pG = (T/TG)-l* (37) 

(38) 

On substitution of equation (36) into equation (37), there is obtained 

p/pu = [(T,/TG)+{l +&r(y- 1)M;- (Ts/Tc:)}z-+r(y- ~ ) M $ X ~ ] - ~ .  

Hence from equations (31) and (38), we have 

139) 
1 a% ____ ~.___________________ ' = 
[(T,/T,) + (1 + +r(r - 1) 2M; - (T,/TG))z - +r(y - 1) M,3a2]4 

where r = 0.89. Equation (39) is the Fc function which we have used. 

4.3. Determination of the FRa function 

Though the theoretically derived expressions for FRa are rather uncertain, they 
can generally be written as 

FR8 = (pG//%) (pS/pG)' (40) 

where Ei is the value of E for uniform-property flow and is a constant. For 
example, 

(a )  In the van Driest-I method, /3 = Q, E = El,  hence 

FRt3 = (PG/PS) (PS/pG)' 

= (TG/T,)p26 for pG/pS = (TG/T,)0'76. 

(b)  In  the van Driest-I1 method, ,I3 = 0, E = Ei, hence 

FBS = (pG/rl(S) 

= (TG/T,)o'76 for pc/ps = (TG/T,)".'6. 
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(c) In  other methods, e.g. those of Kalikman (1956), Kutateladze & Leont'ev 

(43) 
(1961) 

where TN is the value of the temperature at some point near the wall. 
EIE, = f(TN/T,)> 

Hence such theories commonly lead to an expression for FR6 of the form 

F R ~  (Ts/TG)' (TvI~s)~, (44) 

where p and n are two constants which are still indeterminate and are to be 
determined from experiments as in the following paragraphs. 

For the adiabatic-wall case, the temperature gradient a t  the wall is zero, and 
so the temperature near the wall is approximately equal to T,. Hence equa- 
tion (44) reduces to 

Using the functions $z, $ and F, of equations (28), (29), (30) and (39), 
respectively, and all the collected experimental data for the adiabatic-wall case 
(summarized in Appendix A and figures 1-3), we have determined the value of p 
which gives the smallest root-mean-square value of (cf, exp - cr, th)/~f, th. This 
value of p is - 0.702. Thus, for the adiabatic-wall case, 

(45) FR6 = (T,/TG)p. 

FRs = (Ts/Tc)-07"2, (46) 

where Ts is of course the adiabatic-wall temperature which is obtained by 
equation (35). 

The index q can be found from the drag coefficient in the presence of heat 
transfer. When there is heat transfer at the wall, the temperature gradient at  the 
wall has a finite value and it is plausible that the ratio of the temperature in the 
vicinity of the wall to the wall temperature, TN/T,, is 

(47) T"/% = 1 + ~"d(TITs)/d~1,7 

where zLv = uh/u&, uf is the value of u+ at the relevant distance from the wall. It 
is probable that u*$ is small so that u& is usually much larger than ui7; hence 
equation (47) can be written equally well as 

%ITS = (1 + MTIT,)/d~l,)z~.  

Now, by differentiation of equation (36), we obtain 

then 

(48) 

= (Tad, s/Ts)"N* (50) 

Fb = (Ts/TG)' (Tad,  s/Ts)', (51) 

where p = - 0.702 obtained above and q ( = n+) is a constant to  be determined 
empirically with the use of frictional-drag coefficient data in the presence of heat 
transfer. A computer program was written which varied q and minimized the 

Substituting equation (50) into equation (44), we have 
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root-mean-square value of (cf, exp - cf, th)/Cf, th for all the available heat-transfer 
experiments, p being given the value - 0.702 as derived earlier. The minimum 
root-mean-square error was found when q was 0.772. The recommended FR, is 

( 5 2 )  
accordingly 

which reduces to equation (46) for the adiabatic wall. 
FR, = (TS/TG)-0702 (Tad, s/TS)0772, 

0.02 

0.01 

0.001 
3 % l o ?  103 104 

F&Y R8 

FIGURE 9. Comparison between theoretical and experimental F,c,  vs FQ R,. x , cxperi- 
ments, adiabatic; 0, experiments with heat transfer; -, theory equation (28). 

FIGURE 10. Comparison between theoretical and experimental Fccf  vs FR,R,. x , experi- 
ments, adiabatic ; 0, experiments with heat transfer; -, theory equation (29). 

4.4. Comparison of the present method with other theories and experiments 

The root-mean-square value of (cf, - cf, th)  cf, t h  for the present theory has been 
calculated and inserted in table 6 in order to compare it with the other theories. 
The present theory gives the lowest root-mean-square value, namely 9.9 %. 
This is to  be expected because we have derived FR6 directly from the experi- 
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mental data. In  figures 9-11, the experimental and theoretical Fccf vs FR,R,, 
&cf vs FEZ R, and FeCf vs FRr R, are plotted. The agreement between theory and 
experiments is again satisfactory. 

0.01 

I$ 

FL: 

105 108 107 3~ 10' 
0.001 

P E ,  R, 

FIGURE 11. Comparison between theoretical and experimental PcCf uus FR,R,. x , experi- 
ments, adiabatic ; 0,  experiments with heat transfer ; -, theory equation (30). 

Fc C f  

0~0010 
0.0015 
0.0020 
0.0025 
0.0030 
0.0035 
0.0040 
0.0045 
0.0050 
0.0055 

p, Ef 
0.001117 
0.001 7 16 
0.002333 
0.002967 
0.00362 1 
0.004299 
0.005006 
0.005747 
0.006526 
0.007345 

FR,R, 
2.878 x 107 
3.955 x 105 
5.425 x 104 
1-386 x lo4 

5030 
2283 
1208 

716.0 
462.3 
319.4 

F R 3 . C  

5.758 x 1O1O 
4-610 x 10' 
4.651 x lo7 
9.340 x lo6 
2.778 x lo6 
1.062 x lo6 
4.828 x lo5 

1.417 x lo5 
8.697 x lo4 

2.492 x 105 

Fc Cf 

0.0060 
0.0065 
0.0070 
0.0075 
0~0080 
0.0085 
0.0090 
0.0095 
0~0100 
0.0105 

F,  Ff 
0.008205 
0.009105 
0.010042 
0.01 1014 
0.012016 
0.0 1304 
0.01409 
0.015 16 
0.0 1624 
0.01732 

F R J R ~  FR,R, 
233-0 5.679 x 10* 
177.6 3.901 x lo4 
140.4 2.796 x lo4 
114.4 2.078 x lo4 
95.62 1.592 x lo4 
92.49 1.251 x lo4 
70.91 1.006 x lo* 
62.55 8.253 x lo3 
55.87 6.883 x lo3 
50.46 5.826 x lo3 

TABLE 7. Values of Fecf, Fezf ,  F R ~ R ~  and F R ~ R ,  

4.5. Xummary of results 

To facilitate calculation, the main results derived earlier in this section are 
presented in the form of tables and figures. Table 7 gives the corresponding 
values of FCcf and FcCf vsFR,R6 and F,,R,, table 8 gives the values of l$ at 
various i l l ,  and Ts/TG, and table 9 gives the values of FRB at various M, and 
T,/T,. Values from tables 8 and 9 are plotted in figure 12 for convenience of use. 

4.6. Recommended method of calculation 

In  the most common cases, the problem is to find the drag coeficient when the 
Reynolds number, Mach number and temperature ratio are known. The pro- 
cedure for solving this problem by use of the present method is as follows. First, 
the value of F, is determined from table 8 or figure 12. Then the value of FR6 is 
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\JIG 0 1 2 3 4 5 6 7 
\ 

TS/TG\ 

0.05 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.8 
1 
2 
3 
4 
5 
6 
8 

10 
12 
14 
16 
18 
20 
25 
30 

0.3743 
0.4331 
0.5236 
0.5989 
0.6662 
0.7286 
0.7873 
0.8972 
1~0000 
1.4571 
1.8660 
2.2500 
2-6180 
2.9747 
3.6642 
4-3311 
4.9821 
5.6208 
6.2500 
6.8713 
7.4861 
9.0000 

10.4886 

‘\,ilG 8 

WTC\\ 
0.05 1.9041 
0.1 1.9812 
0.2 2-0958 
0.3 2.1882 
0.4 2.2692 
0.5 2.3429 
0.6 2,4115 
0.8 2.5379 
1 2.6542 
2 3.1564 
3 3.5929 
4 3.9964 
5 4.3792 
6 4,7477 
8 5.4549 

10 6.1347 
12 6.7955 
14 7.4422 
16 8.0778 
18 8.7045 
20 9.3238 
25 10.8467 
30 12.3418 

0.4036 
0.4625 
0.5530 
0.6283 
0.6957 
0.7580 
0.8168 
0.9267 
1.0295 
1.4867 
1.8956 
2.2796 
2.6477 
3.0044 
3.6938 
4-3608 
5.0117 
5.6505 
6.2797 
6.9010 
7.5157 
9.0297 

10.5183 

9 

2.3738 
2.3552 
2.4756 
2.5723 
2.6569 
2.7336 
2.8049 
2.9360 
3.0562 
3.5725 
4.0184 
4.4290 
4.8174 
5.1905 
5.9050 
6.5904 
7-2556 
7.9058 
8.5444 
9.1737 
9.7952 

11.3225 
12.8209 

TABLE 8. 

0.4884 
0.5477 
0.6388 
0.7145 
0.7821 
0.8446 
0.9036 
1.0137 
1.1167 
1.5744 
1.9836 
2.3678 
2.7359 
3.0927 
3.7823 
4.4493 
5.1003 
5.7391 
6.3683 
6,9897 
7.6045 
9-1184 

10.6071 

0.6222 
0.6829 
0.7756 
0.8523 
0.9208 
0-9839 
1.0434 
1.1544 
1.2581 
1.7176 
2.1278 
2.5126 
2.8812 
3.2384 
3.9284 
4.5958 
5.2470 
5.8860 
6.5153 
7.1368 
7.7517 
9.2658 

10.7546 

0.7999 
0.8628 
0.9584 
1.0370 
1-1069 
1-1713 
1.2318 
1-3445 
1.4494 
1.9130 
2.3254 
2.7117 
3.0813 
3.4393 
4.1305 
4.7986 
5.4504 
6.0898 
6.7196 
7.3413 
7.9564 
9.4711 

10.9602 

1.0184 
1.0842 
1.1836 
1.2649 
1.3370 
1.4031 
1.4651 
1.5802 
1.6871 
2.1572 
2.5733 
2.9621 
3.3336 
3.6930 
4.3863 
5.0559 
5.7088 
6.3491 
6.9795 
7.6019 
8.2175 
9.7330 

11.2228 

1.2759 
1.3451 
1.4491 
1.5337 
1-6083 
1.6767 
1.7405 
1.8589 
1.9684 
2.4472 
2.8687 
3.2611 
3.6355 
3.9971 
4.6937 
5.3657 
6.0204 
6.662 1 
7.2937 
7.9170 
8.5334 

10.0505 
11.5415 

10 11 12 13 14 

2.6803 
2.7660 
2.8925 
2.9937 
3.0820 
3.1620 
3.2362 
3.3721 
3.4966 
4,0282 
4.4846 
4.9030 
5.2979 
5.6764 
6.3994 
7.0913 
7.7618 
8.4164 
9.0587 
9.6912 

10.3154 
11-8482 
13.3509 

3.1233 
3.2134 
3.3462 
3.4522 
3.5443 
3.6276 
3.7048 
3.8459 
3.9748 
4.5228 
4.9904 
5.4176 
5.8196 
6.2041 
6.9368 
7.6363 
8.3129 
8.9727 
9.6194 

10.2556 
10.8832 
12-4227 
13.9305 

3.6027 
3.6976 
3.8366 
3.9974 
4.0435 
4.1303 
4.2105 
4.3570 
4.4905 
5.0556 
5.5353 
5.9719 
6.3817 
6.7727 
7.5161 
8.2241 
8.9077 
9.5734 

10.2251 
10.8657 
11.4971 
13.0446 
14.5586 

4.1186 
4.2180 
4.3636 
4.4792 
4.5794 
4.6697 
4.7531 
4.9051 
5.0434 
5.6263 
6.1187 
6.5653 
6.9833 
7.3814 
8.1365 
8.8539 
9.5452 

10.2174 
10.6748 
11.5204 
12.1562 
13-7128 
15.2339 

Values of B’? at various MG and T ~ J T G  

4.6707 
4.7748 
4.9269 
5.0475 
5.1518 
5.2458 
5.3324 
5.4901 
5.6333 
6.2345 
6.7401 
7.1972 
7.6240 
8.0297 
8.7972 
9.5247 

10.2245 
10.9040 
11.5676 
12.2187 
12.8595 
14.4263 
15.9556 

1.5713 
1.6444 
1.7534 
1.8418 
1.9194 
1.9903 
2.0564 
2.1785 
2.2913 
2.7809 
3.2092 
3.6066 
3.9847 
4.3493 
5.0505 
5.7259 
6.3832 
7.0271 
7.6603 
8.2851 
8.9027 

10.4222 
11.9149 

15 

5.2591 
5.3680 
5.5267 
5.6523 
5.7608 
5.8584 
5.9483 
6.1117 
6.2599 
6.8801 
7.3993 
7.8673 
8.3033 
8.7169 
9.4977 

10.2359 
10.9449 
11.632 1 
12.3026 
12.9598 
13.6059 
15.1841 
16.722 5 
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0.05 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.8 
1 
2 
3 
4 
5 
6 
8 

10 
12 
14 
16 
18 
20 
25 
30 

82.7405 
2 9.7 852 
10-722 1 
5.8983 
3.8598 
2.7779 
2.1233 
1.3895 
1~0000 
0,3600 
0,1980 
0.1296 
0.0933 
0.0713 
0.0466 
0.0336 
0.0257 
0.0204 
0.0168 
0.0141 
0.0121 
0.0087 
0.0066 

~~ 

1 

93.8950 
33.8006 
12.1676 
6.6934 
4.3801 
3.1524 
2.4095 
1.5768 
1.1348 
0.4085 
0.2247 
0.1471 
0.1058 
0.0809 
0.0529 
0.0381 
0.0391 
0.0232 
0.0191 
0.0160 
0.0137 
0.0099 
0.0075 

9 

2 

125.3092 
45.1092 
16.2385 
8.9328 
5.8456 
4.2071 
3.2 157 
2.1043 
1.5145 
0.5452 
0.2999 
0.1963 
0.1412 
0.1080 
0.0706 
0.0508 
0.0389 
0.0310 
0.0254 
0.02 14 
0.0183 
0.0132 
0.0101 

10 

3 

173-1153 
82.3185 
22.4336 
12.3407 

8.0757 
5.812 1 
4.4424 
2.9071 
2.0923 
0.7532 
0.4143 
0.2711 
0.1951 
0.1491 
0.0976 
0.0702 
0.0537 
0.0428 
0.0351 
0.0295 
0.0253 
0.0182 
0.0139 

11 

4 5 6 7 

234.1638 306.3489 388.2642 478.9229 
84.2949 
30'3447 
16.6926 
10.9236 
7.8618 
6.0091 
3.9323 
2.8301 
1.0188 
0.5604 
0.3667 
0.2639 
0.2017 
0.1320 
0.0950 
0.0726 
0.0579 
0.0475 
0.0400 
0.0342 
0.0246 
0.0188 

12 

110.2803 
39.6990 
21.8384 
14.2910 
10.2853 
7.8615 
5.1445 
3.7025 
1.3328 
0.7332 
0.4798 
0.3453 
0.2639 
0.1727 
0.1243 
0.0950 
0.0757 
0.0622 
0.0523 
0.0447 
0-0322 
0.0246 

13 

139.7684 
50.3 142 
27.6779 
18.1123 
13.0355 
9.9636 
6.5201 
4.6926 
1.6892 
0.9292 
0.6081 
0.4377 
0.3345 
0.2189 
0.1575 
0.1204 
0.0959 
0.0788 
0.0662 
0.0567 
0.0408 
0.0312 

14 

172.4040 
62.0625 
34.1406 
22.3414 
16.0792 
12.2900 
8.0425 
5.7883 
2.0837 
1.1462 
0.7501 
0.5398 
0.4126 
0.2700 
0.1943 
0.1485 
0.1183 
0.0972 
0.0817 
0.0700 
0.0503 
0.0385 

15 

0.05 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.8 
1 
2 
3 
4 
5 
6 
8 

10 
12 
14 
16 
18 
20 
25 
30 

577.5949 683.7162 796.8344 916.5768 1042.629 1174.722 1312.620 1456.116 
207.9243 246.1261 286.8467 329.9519 375.3286 422.8798 472.5207 524.1767 

74.8492 88-6012 103.2599 118.7770 135.1119 152-2295 170.0993 188.6946 
41.1745 48.7395 56.8032 65.3392 74.3250 83.7414 93.5716 103.8009 
26.9444 31.8949 37.1718 42.7577 48.6380 54.8000 61.2328 67.9268 
19.3920 22.9549 26.7527 30.7729 35.0050 39.4398 44.0696 48.8873 
14.8221 17.5454 20.4482 23.5210 26.7557 30.1455 33.6842 37-3665 
9.6995 11.4816 13.3812 15.3920 17.5088 19.7271 22.0428 24.4525 
6.9808 8.2634 9.6305 11.0777 12.6012 14.1977 15.8643 17.5986 
2.5130 2.9747 3.4668 3.9878 4.5362 5.1109 5.7109 6.3352 
1.3824 1.6364 1.9071 2.1937 2.4954 2.8115 3.1416 3.4850 
0.9046 1.0708 1.2480 1.4355 1.6330 1.8398 2.0558 2.2806 
0.6511 0.7707 0.8982 1.0332 1.1752 1.3241 1.4796 1.6413 
0.4976 0.5891 0.6863 0.7897 0.8983 1.0121 1.1309 1.2545 
0,3256 0.3855 0.4493 0.5168 0.5878 0.6623 0.7401 0.8210 
0.2344 0.2774 0.3233 0.3719 0.4231 0.4767 0.5326 0.5909 
0.1791 0.2121 0.2471 0.2843 0.3234 0.3643 0.4071 0.4516 
0.1427 0.1890 0.1969 0.2265 0.2576 0.2903 0.3244 0.3598 
0.1172 0.1388 0.1617 0.1860 0.2116 0.2384 0.2664 0.2955 
0.0985 0.1167 0.1359 0.1564 0.1779 0.2004 0.2239 0.2484 
0.0844 0.0999 0.1164 0.1339 0.1523 0.1716 0.1917 0.2127 
0.0607 0-0719 0.0838 0.0964 0.1096 0.1235 0.1380 0.1531 
0.0464 0.0549 0-0640 0.0737 0.0838 0.0944 0.1055 0.1170 

TABLE 9. Values of F R ~  at various M G  and T,y/Tc 
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determined from equation (52), table 9 or figure 12, and where necessary the 
value of F,, is obtained from the equation 

Finally, by using the input value of R, (or Rx) and the values of F,, (or FEZ) and 
F, above, cf or Cf can be obtained from table 7 or figures 9-1 1. 

FIGURE 13. Chart of constant Pc and E1R8 lines in TslTs and MC co-ordinates. 

The above calculation can be performed in a few minutes with an accuracy of 
1%. The latter is of course well within the limit of experimental accuracy 
at present. 

5. Conclusions 
In conclusion, the results of this work can be summarized as follows. 
A procedure has been developed semi-empirically for predicting the drag 

coefficient on a smooth surface of zero stream-wise pressure gradient at  various 
Reynolds numbers, Mach numbers and ratios of surface temperature to stream 
temperature. 

The extent to which the procedure correlates the existing experimental data 
can be judged by inspection of figures 9-1 1, whereby i t  must be remembered that 
the experiments have been carried out in several entirely different pieces of 
apparatus and are not of high or uniform accuracy. The correlation is better than 
that given by any of the other existing theories as can be seen from table 6. The 
value of the present procedure is that it does not make use of the more arbitrary 
assumptions of earlier theories; it  lets the data speak for themselves. 

The procedure is simple and quick to use in engineering calculations and its 
accuracy is only limited (at the present time) by the accuracy of experimental 
data from which it is in part derived. 

The necessary auxiliary functions have been tabulated (tables 7-9) and 
plotted in figures 9-12 for ready reference. However, it  must be remembered 
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that experiments have not yet been carried out over the whole range of conditions 
covered by the tables and figures. Figure 4 shows how remarkably restricted has 
been the range of experimental conditions so far. 

The procedure is capable of greater refinement when more accurate experi- 
mental data are available, say by modification of the FRs function. It can also be 
extended to include mass transfer (Spalding 1962b). 

Finally, it  should be noted that the calculation procedure which has been 
recommended is based on no new physical hypothesis. The expression recom- 
mended for Fc implies the assumption of one or other variety of the mixing-length 
theory; but the expression for FRs is entirely empirical. It may indeed be rather 
hard to find a physical hypothesis to fit the empirically derived FR6 function; for, 
whereas the exponent of (T,/T,) in equation (52 )  has a sign and magnitude which 
allows us to ascribe its effects to the role of the viscosity near the wall, the sign of 
the exponent of (Tad, s/Ts) is quite unexpected. This point certainly deserves 
explanation. However, we have thought it better at the present stage to provide 
quantitative results against which old and new hypotheses can be tested than to 
advance such hypotheses ourselves. 
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Appendix 
Summary of the methods of evaluating R, integral, approximations A and R, 

appearing in tables 1-4 
Approximate analytical ( A )  

Taking equation (3) of $2.2, for example, we have 
f 2  1 

R, = pu,Kuct I0 $"( 1 - x )  exp {Ku& 1" $ d z ]  dz. 
PGE 0 

As the magnitude of the integrand is small a t  small z, 

is replaced by Nx, where 

t.he equation (3) now becomes 

R, = p,gu52~os #3z(l - z )  exp (KNu,fz)dz. 
PGE 

On integrating equation (A 1) by parts twice, there is obtained 

1 -lo1 [$3( 1 - 22) + z( 1 - z )  (d$3/dz)] exp (KNu&z)dz] 0 

+ smaller terms 

Hence 

Approximate analytical (B)  
Taking equation (3) of § 2.2, for example, we have 
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Equation (3) is re-written as 

Replace 

where n is so chosen that the gradient is the same, then, on differentiation, we 
have Ku& $ = n. Now equation (B 1) can be re-written as 

As Ku&$ & 3 in general, equation (B 3 )  can be approximately written as 

Hence 

(B 3) 

(B 4) 




