The drag of a compressible turbulent boundary layer on a smooth flat plate with and without heat transfer

By D. B. SPALDING and S. W. CHI
Mechanical Engineering Department, Imperial College of Science and Technology, London, S.W. 7

(Received 10 May 1963)
The theoretical treatments given by earlier authors are classified, reviewed and where necessary extended; then the predictions of twenty of these theories are evaluated and compared with all available experimental data, the root-meansquare error being computed for each theory. The theory of van Driest-II gives the lowest root-mean-square error (11.0%).

A new calculation procedure is developed from the postulate that a unique relation exists between $c_{f} F_{c}$ and $R F_{R}$ where c_{f} is the drag coefficient, R is the Reynolds number, and F_{c} and F_{R} are functions of Mach number and temperature ratio alone. The experimental data are found to be too scanty for both F_{c} and F_{R} to be deduced empirically, so F_{c} is calculated by means of mixing-length theory and F_{R} is found semi-empirically. Tables and charts of values of F_{c} and F_{R} are presented for a wide range of M_{G} and T_{S} / T_{G}. When compared with all experimental data, the predictions of the new procedure give a root-mean-square error of $\mathbf{9 . 9} \%$.

1. Introduction

In many circumstances of interest to aeronautical engineers, it is necessary to predict the frictional drag at a surface along which a gas is flowing at high speed and through which heat is being transferred. This is not only important in the prediction of the frictional drag itself but also in the prediction of the heat transfer, for example by means of a 'modified Reynolds analogy'. This knowledge is required in connexion with many processes, for example, in the cooling of combustion-chamber walls, gas-turbine blades, hypersonic ram-jet intakes, rocket-motor nozzles and high-speed aircraft skins.

Often the velocity of the mainstream fluid is not uniform. In a rocket-nozzle it increases with distance downstream, whilst in a ram-jet intake it decreases; the main-stream pressure is accordingly non-uniform. Despite these facts, it is necessary to restrict attention in the present paper mainly to the case in which the pressure gradient is zero; that is, to that of the boundary layer on a flat plate. The reason is that this is the simplest case, which must be understood first.

There have been numerous investigations of the problem, both theoretical and experimental; these will be described in some detail in the following $\S \S 2,3$. Nevertheless, as will appear below, present knowledge of the subject is defective in two respects. First, there is considerable uncertainty as to which of various theories gives the best prediction; for each theory contains fairly drastic simplifi-
cations, and has usually been compared with only a small selection of the available experimental data. Secondly, some of the methods of prediction (including unfortunately those which give the most accurate predictions) are difficult to use; the prospective user of the method has to carry out extensive numerical work, because the necessary auxiliary functions have not been computed and tabulated once for all.

It is intended below to pay particular attention to remedying the above defects. As far as possible, uncertainty will be eliminated by comparing the existing theories with all published experimental data and by developing a new calculation procedure based upon accumulated theoretical and experimental knowledge of the compressible turbulent boundary layer; and graphs and tables will be presented which permit friction to be calculated for a wide range of conditions as a result of merely a few minutes' work.

The tables cover Mach numbers (M_{G}) between 0 and 15, and ratios of wall temperature to main-stream temperature (T_{S} / T_{G}) between 0.05 and 30.

Sections 2 and 3 below are mainly devoted to a review of earlier work. These lead to a development of the present method which is presented in §4. Readers solely concerned with the use of the method should turn to $\S 4.6$ which contains a summary of the prediction procedures which are recommended for use.

Notation

$a, b \quad$ see equations (13) and (14)
c_{f} local frictional drag coefficients based upon main-stream fluid properties, equation (17)
$\bar{c}_{f} \quad$ overall frictional drag coefficient based upon main-stream fluid properties, equation (26)
$E \quad$ a constant, equation (2)
$F_{c} \quad$ function multiplying c_{f} in universal drag law, equations (11) and (19)
$F_{\bar{c}} \quad$ function multiplying \bar{c}_{f} in universal drag law, equation (11)
$F_{R \delta} \quad$ function multiplying R_{δ} in universal drag law, equations (12) and (20)
$F_{R x} \quad$ function multiplying R_{x} in universal drag law, equations (12) and (25)
$h \quad$ specific enthalpy, equation (32), (B.Th.U./lb.)
$h^{0} \quad$ stagnation enthalpy, equation (32), (B.Th.U./lb.)
$K \quad$ a constant ($\approx 0 \cdot 4$), equation (2)
$M_{G} \quad$ Mach number of main stream, equation (13)
n, p, q exponents, equations (44) and (51)
$P \quad$ Prandtl number, equation (36)
$r \quad$ recovery factor, equation (35)
$R_{\delta} \quad$ Reynolds number based upon momentum thickness and main-stream fluid properties, equation (3)
$R_{x} \quad$ Reynolds number based upon x and main-stream fluid properties, equation (21)
$T \quad$ temperature, equation (13), $\left({ }^{\circ} \mathrm{R}\right)$
$u \quad$ velocity in x-direction, equation (1), (ft./h)
$x \quad$ distance measured along main-stream direction from effective start of turbulent boundary layer, implied in the definition of R_{x}, (ft.)

```
u+ non-dimensional value of }u\mathrm{ , equation (2)
y distance from wall, equation (1),(ft.)
y+}\quad\mathrm{ non-dimensional value of }y\mathrm{ , equation (2)
z a different non-dimensional value of }u\mathrm{ , equation (2)
\delta}\mp@code{momentum thickness, equation (3), (ft.)
\gamma specific heat ratio, equation (13)
\phi function appearing in equations (2), (5), etc.
\psi
\frac{\psi}{\psi}
\rho density, equation (1), (lb./ft. '3)
\mu viscosity, equation (3), (lb./ft.h)
\tau shear stress in boundary layer, equation (1), (lb./ft. h')
```


Subscripts

av average conditions in laminar sublayer
$G \quad$ main-stream fluid state, equation (2)
$i \quad$ uniform property flow, equation (43)
$N \quad$ state near the wall, equation (43)
$S \quad$ state at the wall, equation (2)
1 outer edge of laminar sublayer, table 1

2. Survey of previous theoretical work

2.1. General characteristics of analyses

There are a number of theories for the prediction of the frictional-drag coefficient in the compressible turbulent boundary layer on a smooth flat plate (see the references marked with an asterisk in the list at the end of the paper). According to the nature of the principal assumptions used by various authors, the theories can be grouped into five types, namely, (i) theories based upon the Prandtl differential equation, (ii) theories based upon the von Kármán differential equation, (iii) theories based upon other differential equations, (iv) theories based upon a fixed velocity profile, and (v) theories based upon the incompressible formulae with fluid properties inserted at a 'reference' state. The main features of the analyses for each of those groups will be summarized in the following five sections ($£ 2.2-2.6$), and the characteristics of individual theories belonging to these groups will be indicated in tables $1-5$. Table 6 includes miscellaneous analyses which do not belong to any of the five groups mentioned above.

2.2. Theories based upon the Prandtl differential equation

By 'the Prandtl differential equation' we mean that postulated by Prandtl (see Schlichting 1960, p. 477) relating the shear stress in the turbulent part of the boundary layer to the velocity gradient and other properties, namely

$$
\begin{equation*}
\tau=\rho K y^{2}\left(\frac{d u}{d y}\right) \tag{1}
\end{equation*}
$$

Method of
evaluating R_{δ} integral
$\left\{\begin{array}{l}\text { Approximate analytical (A)* } \\ \text { Approximate analytical (B)* } \\ \text { Exact numerical } \\ \text { Exact numerical (approxi- } \\ \text { mate integration used later } \\ \text { to yield } c_{f}\left(R_{x}\right) \\ \text { Approximate analytical (B) }\end{array}\right.$
Nature of ϕ
$\phi=\left(\rho / \rho_{S}\right)^{\frac{1}{2}}=\left(1+b z-a^{2} z^{2}\right)^{-\frac{1}{2}}$
$\phi=\left(\rho / \rho_{S}\right)^{\frac{1}{2}}=\left[1+\left(b-0 \cdot 1 a^{2}\right) z\right.$
$\left.-0 \cdot 9 a^{2} z^{2}\right]^{-\frac{1}{2}}$
\quad Hypothesis for E
$E=11 \cdot 24$
$E=13 \cdot 1\left(\right.$ for $\left.\psi_{x}\right) \dagger$
$2 y_{1} u_{\text {av }} \rho_{\mathrm{av}} / \mu_{\mathrm{av}}=(11 \cdot 5)^{2}$
$y_{1}^{+}=u_{G}^{+}\left(z_{1}+\frac{1}{2} b P z_{1}^{2}+\frac{1}{3} b P z_{1}^{3}\right)$
$E=13 \cdot 1\left(\right.$ for $\left.\psi_{x}\right)$
${ }_{T+m}\left(S_{L} L /{ }^{D} d\right) 9 \cdot \mathrm{II}={ }_{+} \hbar$
$z_{1}=11 \cdot 6 \times\left(\frac{1}{2}\right.$ drag coefficient in
uniform-property flow at same
$\left.R_{\delta}\right)^{\frac{1}{2}}$

* These methods of evaluating R_{δ} integral are summarized in the Appendix.
\dagger 'For ψ_{x} ' means that the value of E specified here is for the $c_{f} v s . R_{x}$ expression.
Table 1. Theories based upon Prandtl differential equation

Author and year	Hypothesis for E	Nature of ϕ	Method of evaluating R_{δ} integral
Frankl \& Voishel (1937)	$\begin{aligned} & u_{1}^{+}=11.5 \\ & \left(d u^{+} / d y^{+}\right)_{1}=0.289 \end{aligned}$	$\begin{aligned} \phi & =\left(\rho / \rho_{S}\right)^{\frac{1}{z}} \\ & =\left(1+b z-a^{2} z^{2}\right)^{-\frac{1}{2}} \end{aligned}$	Approximate analytical-by expanding integrand in series of b and a^{2}, and neglecting higher terms
Wilson (1950)	$\begin{aligned} & u_{1}^{+}=11 \cdot 6 \\ & \left(d u^{+} / d y^{+}\right)_{1}=0.218 \end{aligned}$	$\begin{aligned} \phi & =\left(\rho / \rho_{S}\right)^{\frac{1}{2}} \\ & =\left(1-a^{2} z^{2}\right)^{-\frac{1}{2}} \end{aligned}$ (adiabatic only)	Approximate analytical (B)
Rubesin, Maydew \& Varga $\begin{aligned} & \text { (1951) } \\ & \text { van Driest-II (1955) } \end{aligned}$	$\begin{aligned} & u_{1}^{+}=11 \cdot 5 \\ & \left(d u^{+} / d y^{+}\right)_{1}=0.218 \\ & E=13 \cdot 1\left(\text { for } \psi_{x}\right) \end{aligned}$	$\left\{\begin{aligned} \phi & =\left(\rho / \rho_{S}\right)^{\frac{1}{2}} \\ & =\left(1+b z-a^{2} z^{2}\right)^{-\frac{1}{2}} \end{aligned}\right.$	Exact numerical Approximate analytical (B)
Deissler \& Loeffler (1959)	$y_{1}^{+}=26$ For $y^{+} \leqslant 26$, $\begin{aligned} \tau_{S} & =(\mu+0.01188 \rho u y) \frac{d u}{d y} \\ q_{S} & =(k+0.01188 \rho u y) \frac{d T}{d y} \end{aligned}$ Table 2. Theori	$\begin{aligned} \phi= & \left(\rho / \rho_{S}\right)^{\frac{1}{2}} \\ = & {\left[\frac{T_{1}}{T_{S}}-\frac{q_{S}}{c_{p} T_{S} \sqrt{\left(\rho_{S} \tau_{S}\right)}}\left(u^{+}-u_{1}^{+}\right)\right.} \\ & \left.-\frac{\tau_{S}}{2 c_{p} T_{S} \rho_{S}}\left(u^{+2}-u_{1}^{+2}\right)\right]^{-\frac{1}{2}} \end{aligned}$	Exact numerical

Table 2. Theories based upon von Kármán differential equation

Author and year
Clemmow-I (1950)
Clemmow-II (1950)
Ferrari (1950)
Li \& Nagamatsu (1951)
Kosterin \& Koshmarov (1960)
Table 3. Theories based upon other differential equations
Expression of ρ / ρ_{S}
The value of constant is unknown $\left.\left.\quad(\gamma-1) M_{G}^{2}\right]\right\}$
$\tau_{S}=\rho K^{2} y^{2}(d u / d y)^{2}+f\left(M_{G}\right) u K^{2} y^{2} \frac{d \rho}{d y} \frac{d u}{d y}$ The function of $M_{G}, f\left(M_{G}\right)$ is unknown
$\tau_{S}=\rho K^{2} y^{2}(d u / d y)^{2}+\int K^{2} y u \frac{d \rho}{d y} \frac{d u}{d y} d y$

Mcthod of evaluating R_{δ} integral
Mcthod of evaluating R_{δ} integral
Approximate analytical (B)
Approximate numerical
Approximate analytical (B)

Exact numerical

evaluating $R_{\boldsymbol{\delta}}$ integral
Exact numerical
Approximate analytical (B)

Approximate analytical (B) ximate analytical (B) 1 | Author and year | Expression of T_{R} / T_{G} |
| :--- | :--- |
| von Kármán (1935) | $T_{R} / T_{G}=1+\frac{1}{2}(\gamma-1) M_{G}^{2}$ (adiabatic only) |
| Tucker (1951) | $T_{R} / T_{G}=1+\frac{1}{4}(\gamma-1) M_{G}^{2}$ (adiabatic only) |
| Young \& Janssen (1952) | For $M_{G}<5 \cdot 6: T_{R} / T_{G}=0 \cdot 42+0 \cdot 58\left(T_{S} / T_{G}\right)+0.035 M_{G}^{2}$ |
| | For $M_{G}>5 \cdot 6: T_{R} / T_{G}=0 \cdot 42+0 \cdot 58\left(T_{S} / T_{G}\right)+0 \cdot 023 M_{G}^{2}$ |
| Sommer \& Short (1955) | $T_{R} / T_{G}=0.55+0 \cdot 45\left(T_{S} / T_{G}\right)+0 \cdot 035 M_{G}^{2}$ |
| Eckert (1955) | $T_{R} / T_{G}=0 \cdot 5+0.5\left(T_{S} / T_{G}\right)+0 \cdot 11 P^{\frac{1}{3}}(\gamma-1) M_{G}^{2} \quad$ or |
| | $h_{R} / h_{G}=0 \cdot 28+0.5\left(h_{S} / h_{G}\right)+0 \cdot 22\left(h_{a d,} S / h_{G}\right)$ |

With the assumption $\tau=\tau_{S}$, the velocity distribution in the turbulent boundary layer is derived,

$$
\begin{equation*}
y^{+}=E^{-1} \exp \left(K u_{\dot{G}}^{\dagger} \int_{0}^{z} \phi d z\right) \tag{2}
\end{equation*}
$$

where $y^{+} \equiv y\left(\tau_{S} \rho_{S}\right)^{\frac{1}{2}} / \mu_{S}, u^{+} \equiv u /\left(\tau_{S} / \rho_{S}\right)^{\frac{1}{2}}, z \equiv u / u_{G}, \phi \equiv\left(\rho / \rho_{S}\right)^{\frac{1}{2}}, K=$ a mixing length constant, $E=$ an integrating constant, and subscript G refers to the main stream, i.e. the outer 'edge' of the boundary layer, subscript S refers to the fluid conditions immediately adjacent to the wall, i.e. to the inner 'edge' of the boundary layer.*

Equation (2) leads to the integral for R_{δ} :
where

$$
\begin{gather*}
R_{\delta}=\frac{\mu_{S}}{\mu_{G}} \frac{K}{E}\left(u_{G}^{+}\right)^{2} \int_{0}^{1} \phi^{3} z(1-z) \exp \left(K u_{G}^{+} \int_{0}^{z} \phi d z\right) d z, \tag{3}\\
R_{\delta} \equiv \frac{\rho_{G} u_{G} \delta_{2}}{\mu_{G}}, \quad \delta_{2} \equiv \int_{0}^{y_{G}} \frac{\rho}{\rho_{G}} \frac{u}{u_{G}}\left(1-\frac{u}{u_{G}}\right) d y
\end{gather*}
$$

The above features are common to all analyses of this group. The differences between them are in either: (i) an hypothesis for E (or other method of determining the integration constant), (ii) the nature of the ϕ function, or (iii) the method of evaluating the R_{δ} integral. Accordingly, the individual members of the group are distinguished by the nature of these three items in table 1 .

2.3. Theories based upon the von Kármán differential equation

The differential equation postulated by von Kármán (see Schlichting 1960, p. 485) as the connexion between $\tau, d u / d y$ and other quantities is

$$
\begin{equation*}
\tau=\rho K^{2}(d u / d y)^{4} /\left(d^{2} u / d y^{2}\right)^{2} . \tag{4}
\end{equation*}
$$

The assumption $\tau=\tau_{S}$ leads to the velocity distribution

$$
\begin{equation*}
y^{+}=(K / E) \int_{0}^{u^{+}} \exp \left(K u_{E}^{+} \int_{0}^{z} \phi d z\right) d u^{+} . \tag{5}
\end{equation*}
$$

This leads further to the R_{δ} integral

$$
\begin{equation*}
R_{\delta}=\frac{\mu_{S}}{\mu_{\theta}} \frac{K}{E} u_{G}^{+2} \int_{0}^{1} \phi^{2} z(1-z) \exp \left(K u_{G}^{+} \int_{0}^{z} \phi d z\right) d z \tag{6}
\end{equation*}
$$

Equations (4)-(6) are common to all the methods of this group; individual methods are classified in table 2 by reference to either (i) their hypotheses for E, (ii) the nature of the ϕ function, or (iii) the method of evaluating the R_{δ} integral.

2.4. Theories based upon other differential equations

Analyses of this group start from various differential equations but the assumption of $\tau=\tau_{S}$ is also made as in the above two groups ($\S \$ 2.2,2.3$). Generally speaking, all proposed differential equations lead to equations for the velocity distribution which are identical in form with (2) or (5). However, the nature of ϕ in this expression differs from that in $\S \S 2.2$ and 2.3 , that is, ϕ here is no longer

[^0]equal to $\left(\rho / \rho_{S}\right)^{\frac{1}{2}}$. The Reynolds-number integral for the analyses of the group is either
or
\[

$$
\begin{gather*}
R_{\delta}=\frac{\mu_{S}}{\mu_{G}} \frac{K}{E} u_{G}^{+2} \int_{0}^{1} \phi \frac{\rho}{\rho_{S}} z(1-z) \exp \left(K u_{G}^{+} \int_{0}^{z} \phi d z\right) d z, \tag{7}\\
R_{\delta}=\frac{\mu_{S}}{\mu_{G}} \frac{K}{\bar{E}} u_{G}^{+2} \int_{0}^{1} \frac{\rho}{\rho_{S}} z(1-z) \exp \left(K u_{G}^{+} \int_{0}^{z} \phi d z\right) d z \tag{8}
\end{gather*}
$$
\]

depending on whether the velocity distribution of (2) or that of (5) is appropriate. Methods of this group are distinguished in table 3 by reference to either (i) the nature of the differential equation, or (ii) the method of evaluating the R_{δ} integral.

2.5. Theories based upon a fixed velocity profile

In this group, it is assumed that the velocity profile is independent of compressibility, for example, $\quad y^{+}=E^{-1} \exp \left(K u^{+}\right)$,
for which the R_{δ} integral becomes

$$
\begin{equation*}
R_{\delta}=\frac{\mu_{S}}{\mu_{G}} \frac{K}{E} u_{G}^{+2} \int_{0}^{1} \frac{\rho}{\rho_{S}} z(1-z) \exp \left(K u_{G}^{+}\right) d z \tag{10}
\end{equation*}
$$

Methods of this group are distinguished in table 4 by reference to (i) the assumed fixed velocity profile, (ii) the expression for ρ / ρ_{S}, and (iii) the method of evaluating the R_{δ} integral.

2.6. Theories based upon incompressible formulae with reference properties

Methods of this group imply the existence of a universal relationship between frictional-drag coefficient and Reynolds number, if properties are evaluated at a reference temperature (or reference enthalpy). They are distinguished in table 5 by reference to (i) the method by which the reference temperature was determined, and (ii) the expression for T_{R} / T_{G} or (h_{R} / h_{G}).

2.7. Miscelianeous other methods

Methods which do not belong to those groups discussed in §§ 2.2-2.6 include the use of various transformations and the direct use of empirical data. We have placed in this category the theories of Lin \& Shen (1951), Shen (1951), Donaldson (1952), Spence (1959), Winkler (1961), Burgraff (1962) and Coles (1962).

The validity of the assumptions and simplifications involved in various theories can only be verified by comparison with experiment. This will be done systematically in the next section.

3. Comparison between the theoretically and experimentally obtained data
 3.1. Purpose of comparison

As pointed out above, all theoretical treatments discussed in § 2 have been based upon assumptions and simplifications. Further, their predictions differ significantly, as has been shown, for example, by Chapman \& Kester (1953) for the adiabatic-wall case. It is therefore necessary to establish the relative validity of all theories by comparing them with experimental data. Other authors, for
example, Rubesin, Maydew \& Varga (1951), Sommer \& Short (1955), Monaghan (1950), Matting, Chapman, Nyholm \& Thomas (1961), Winkler (1961) and Peterson (1963) have compared some theories with experiments; but they either used relatively few sets of experimental data or used a qualitative method of comparison in the form of numerous figures, so their conclusions are still rather indecisive. We shall compare the various theories with all published experimental data of c_{f} and \bar{c}_{f} versus R_{δ} and R_{x} at various M_{G} and T_{S} / T_{G}, and shall evaluate for each theory a quantitative measure of its agreement with experiment. After that, we shall be able to see which of the available theories is best, and so learn which assumptions for the compressible turbulent boundary layer are most plausible. This examination forms the starting point for the development of an improved calculation procedure, which is also presented below.

3.2. Experimental data

If experimental data were accurate, a few sets of data at desired conditions (Mach number and heat-transfer rates) would suffice to test the validity of the various theories. Such data are, however, not available. For this reason, the greatest possible number of experimental data have been collected (see references marked with a double dagger) and tabulated.* They include measurements on a flat plate and on a cylinder with axis parallel to the stream direction and radius large in comparison with the boundary-layer thickness. Figures 1-3 show the collected data in the form of $c_{f} v s R_{\delta}, c_{f} v s R_{x}$ and $\bar{c}_{f} v s R_{x}$, and figure 4 shows the conditions (i.e. values of M_{G} and T_{S} / T_{G}) which have been explored experimentally. Although it must be expected that the data are not all equally reliable, we have made no attempt to estimate their accuracy or to introduce any corresponding weighting factors.

3.3. Theoretical data

Theoretical friction-coefficient data corresponding to the experimental Reynolds number (R_{δ} or R_{x}), Mach number (M_{G}) and temperature ratio (T_{S} / T_{G}) have been obtained by the various methods discussed in $\S 2$; however, some authors have not worked out all the relations which are required if their theories are to be compared with all the collected experimental data. Extensions can, however, be made to those theories without conflicting with the authors' original argument. The methods used by us in making the extensions are summarized below.

Conversion of R_{x} to $R_{\hat{\delta}}$ and vice versa. The results of some analyses, viz. Clemmow (1950), Cope (1943), Monaghan (1950), Smith \& Harrop (1946), Van Driest (1950, 1955), Wilson (1950) and the theories of table 5, imply that a unique relation exists between $c_{f} F_{c}$ and $R F_{R}$ where F_{c} and F_{R} are functions of Mach number and temperature ratio alone. As will be shown in §4, the relations between $F_{c}, F_{\bar{c}}, F_{R \delta}$ and $F_{R x}$ are such that

$$
\begin{gather*}
F_{c}=F_{\bar{c}} \tag{11}\\
F_{R x}=F_{R \delta} / F_{c} \tag{12}
\end{gather*}
$$

where F_{c} and $F_{\bar{c}}^{\prime}$ are the functions of M_{G} and T_{S} / T_{G} multiplying c_{f} and \bar{c}_{f} respectively, and $F_{R \delta}$ and $F_{R x}$ are the functions of M_{G} and T_{S} / T_{G} multiplying R_{δ} and R_{x},

* The table is not printed here. Copies may be obtained by interested readers on application to the authors.
respectively. Hence equations (11) and (12) enable the determination of the $c_{f} v s R_{x}$ relation of one of these theories from the corresponding $\bar{c}_{f} v s R_{x}$ or $c_{f} v s R_{\delta}$ relations, and vice versa.

Figure 1. Collected experimental data of $c_{f} v s R_{\delta}$ in compressible turbulent boundary layer. \times, adiabatic; 0 , with heat transfer.

Figure 2. Collected experimental data of $c_{f} v s R_{x}$ in compressible turbulent boundary layer. \times, adiabatic; O, with heat transfer.

Extension of theories derived for the adiabatic wall to the case of heat transfer. When only the adiabatic-wall case is considered and the Reynolds analogy between momentum and energy transfer is assumed, as in the theories of Cope (1943), Donaldson (1952), Wilson (1950), etc., the temperature-distribution equation is

$$
\begin{equation*}
T / T_{S}=1-a^{2} z^{2} \tag{13}
\end{equation*}
$$

where

$$
a^{2} \equiv\left[\frac{1}{2}(\gamma-1) M_{G}^{2}\right] /\left(1+\frac{1}{2}(\gamma-1) M_{\theta}^{2}\right),
$$

Figure 3. Collected experimental data of \bar{c}_{f} vs R_{x} in compressible turbulent boundary layer. \times, adiabatic; O, with heat transfer.

Figure 4. Area of conditions explored experimentally.
$z \equiv u / u_{G}, T \equiv$ absolute temperature (${ }^{\circ} \mathrm{R}$), and suffixes G and S refer to free stream and surface, respectively.

We have extended equation (13) to include the effect of heat transfer as follows:

$$
\begin{equation*}
T / T_{S}=1+b z-a^{2} z^{2}, \tag{14}
\end{equation*}
$$

where

$$
b \equiv\left[\left\{1+\frac{1}{2}(\gamma-1) M_{G}^{2}\right\} /\left(T_{S} / T_{G}\right)\right]-1
$$

and

$$
a^{2} \equiv\left\{\frac{1}{2}(\gamma-1) M_{G}^{2}\right\} /\left(T_{S} / T_{G}\right)
$$

Viscosity law. The viscosity law recommended by the original authors has been used in most cases for applying their theory to experimental conditions. When this is not possible, or no law is recommended, the following power law has been used

$$
\begin{equation*}
\mu \propto T^{10.76} \tag{15}
\end{equation*}
$$

Although Sutherland's viscosity law, given by

Figure 5. Comparison of various viscosity-temperature laws.
is more accurate than the power law, the absolute value of T_{G} was not reported by most experimenters. Figure 5 shows the viscosity-temperature relations used in the various theories. Since μ has only a weak influence on c_{f}, it is unlikely that the use of different viscosity laws for different theories has any appreciable effect on our final conclusions.

Drag laws for incompressible flow. Each of the authors whose works we have studied incorporates in his theory, implicitly or explicitly, a relationship between drag coefficient and Reynolds number (either R_{δ} or R_{x}) valid for incompressible flow. We have in each case used the relationship recommended by the author in question, without attempting to calculate separately its effect on the accuracy of the theory. However, in the Reynolds-number range of the experiments, the drag coefficients calculated from the various formulae differ only by 1 or 2%, so there is no reason to expect that the use of a single relationship would have appreciably modified our final conclusion.

3.4. Comparison between theories and experiments

Twenty out of twenty-nine collected theories (see references marked with an asterisk) are compared in this report; they are believed to include all the essential assumptions used by various authors. Nine theories (theories which have been
 R.M.S. error R.M.S. error ¢
Table 6. Comparison of theories with experimental data of the references marked with a cross
compared are listed in table 6) are not included, either because they still have indeterminate constants or because they involve lengthy time-consuming numerical work which is believed not to be profitable at the present state of knowledge of turbulence.

The criterion used for comparison is the root-mean-square of

$$
\left(c_{f, \exp }-c_{f, \text { th }}\right) / c_{f, \text { th }},
$$

where $c_{f, \exp }$ is the experimental local or overall friction coefficient and $c_{f, \text { th }}$ is the theoretical local or overall friction coefficient*, the corresponding experimental Reynolds number (R_{δ} or R_{x}), Mach number (M_{G}) and temperature ratio (T_{S} / T_{G}). In evaluating the above root-mean-square value for each of 20 theories, all the experimental data of Appendix A (plotted in figures 1-3) have been used.

The evaluation of the root-mean-square values of $\left(c_{f, \exp }-c_{f, \text { th }}\right) / c_{f, \text { th }}$ was carried out by the Mercury digital computer of London University. A computer program was written for each of the twenty theories. Then each theory was applied to each of the 491 experimental conditions for which $c_{f, \exp }$ data were a vailable, yielding appropriate values of $c_{f, t \mathrm{th}}$. The root-mean-square value of $\left(c_{f, \exp }-c_{f, \text { th }}\right) / c_{f, \text { th }}$ was then computed for each theory in an obvious manner.
The results of the comparison are shown in table 6. They give a quantitative indication of the accuracy of the various theories when compared with present empirical knowledge of the compressible turbulent boundary layer.

It is seen from table 6 that the three best theories are those of van Driest-II (1955), Wilson (1950) extended by us, and Kutateladze \& Leont'ev (1961). They are all based upon the mixing-length theory used in the method of $\S \S 2.2$ or 2.3 , that is, tables $\mathbf{1}$ or 2 . Table 6 also reveals that all theories exhibit a greater error when compared with the data for finite heat-transfer rates than when compared with data obtained under adiabatic conditions.

4. Development of an improved calculation procedure

4.1. Fundamental functions

We first seek a relation between c_{f} and R_{δ}. For the constant-pressure boundary layer, we may expect that

$$
\begin{equation*}
c_{f}=c_{f}\left(R_{\delta}, M_{G}, T_{S} / T_{G}\right) \tag{17}
\end{equation*}
$$

The nature of the function can be determined either theoretically (§2) or experimentally.

Now many of the theoretical expressions, viz. theories of Clemmow-I \& II (1950), Cope-II (1943), Monaghan (1950), Smith \& Harrop (1946), van Driest-I \& II (1951, 1955), Spence (1959), Wilson (1950), Winkler (1961) and table 5 can be written in the form

$$
\begin{equation*}
\frac{1}{2} c_{f} F_{c}=\psi_{\delta}\left(R_{\delta} F_{R \delta}\right), \tag{18}
\end{equation*}
$$

where the function ψ_{δ} is independent of Mach number and temperature ratio, the

[^1]effects of which are wholly accounted for by the functions F_{c} and $F_{R \delta}$. The latter functions are such that
\[

$$
\begin{align*}
F_{c} & =F_{c}\left(M_{G}, T_{S} / T_{G}\right), \\
& =1, \quad \text { for } \quad M_{G}=0, \quad T_{S} / T_{G}=1 ; \tag{19}\\
F_{R \delta} & =F_{R \delta}\left(M_{G}, T_{S} / T_{G}\right), \\
& =1, \quad \text { for } \quad M_{G}=0, \quad T_{S} / T_{G}=1 . \tag{20}
\end{align*}
$$
\]

Some of the other theoretical expressions, for example, those of Kutateladze \& Leont'ev (1961), and Burgraff (1962), if expressed in the form of equation (18), would imply that $F_{R \delta}$ exhibits a weak dependence on c_{f}; however, this is by no means certain, as is shown by our comparison between theories and experiments (table 6) and we shall ignore this dependence.

Figure 6. Comparison of equation (28) with uniform-property data, c_{f} vs R_{δ}.
Secondly, we will consider the relation between c_{f} and R_{x}. The integral momentum equation for the boundary layer on a flat plate (see Schlichting 1960, p. 536) leads to

$$
\begin{equation*}
{ }_{2}^{1} c_{f}=d R_{\delta} / d R_{x} \tag{21}
\end{equation*}
$$

Rewriting equation (21) in integral form, we obtain

$$
\begin{equation*}
R_{x}=\int_{0}^{R_{\delta}}\left(2 / c_{f}\right) d R_{\delta} . \tag{22}
\end{equation*}
$$

By multiplication of equation (22) by $F_{R \delta} / F_{c}$, there is obtained

$$
\begin{equation*}
\frac{F_{R \delta}}{F_{c}} R_{x}=\int_{0}^{F_{R \delta} R_{\delta}} \frac{2}{c_{f} F_{c}} d\left(F_{R \delta} R_{\delta}\right) . \tag{23}
\end{equation*}
$$

We have already postulated the existence of a unique relation between $c_{f} F_{c}$ and $R_{\hat{\delta}} F_{R \delta}$ in equation (18), which is independent of Mach number and temperature ratio. With this, equation (23) yields

$$
\begin{equation*}
\frac{1}{2} c_{f} F_{c}=\psi_{x}\left(R_{x} F_{R x}\right), \tag{24}
\end{equation*}
$$

where the function ψ_{x} is independent of Mach number and temperature ratio, F_{c} and $F_{R \delta}$ are the same functions as those of equations (19) and (20), and $F_{R x}$ is related to $F_{R \delta}$ and F_{c} by

$$
\begin{align*}
F_{R x} & =F_{R \delta} / F_{c} \\
& =1, \quad \text { for } \quad M_{G}=0, \quad T_{S} / T_{G}=1 \tag{25}
\end{align*}
$$

Finally, consider \bar{c}_{f} as a function of R_{x}. From the definition of \bar{c}_{f},

$$
\begin{equation*}
\frac{1}{2} \bar{c}_{f} \equiv\left(R_{x}\right)^{-1} \int_{0}^{R_{x}}\left(c_{f} / 2\right) d R_{x} \tag{26}
\end{equation*}
$$

it can be shown by the method of the preceding paragraph that

$$
\begin{equation*}
\frac{1}{2} \bar{c}_{f} F_{c}=\bar{\psi}\left(R_{x} F_{R x}\right) \tag{27}
\end{equation*}
$$

where the function $\bar{\psi}$ is again independent of Mach number and temperature ratio, and F_{c} and $F_{R x}$ are defined by equations (19) and (25).

To summarize, it has been shown that, if $F_{R \delta}$ is independent of $\frac{1}{2} c_{f}$, the following functions exist,

$$
\begin{align*}
& \frac{1}{2} c_{f} F_{c}=\psi_{\delta}\left(F_{R \delta} R_{\delta}\right), \tag{18}\\
& \frac{1}{2} c_{f} F_{c}=\psi_{x}\left(F_{R x} R_{x}\right), \tag{24}\\
& \frac{1}{2} \bar{c}_{f} F_{c}=\bar{\psi}\left(F_{R x} R_{x}\right), \tag{27}
\end{align*}
$$

where ψ_{δ}, ψ_{x} and $\bar{\psi}$ are independent of Mach number and temperature ratio. Now analytic functions exist which adequately represent the relations between $\frac{1}{2} c_{f}$ and $R_{\delta}, \frac{1}{2} c_{f}$ and R_{x}, and $\frac{1}{2} \bar{c}_{f}$ and R_{x}, in uniform-density flow (Spalding 1962a), namely*

$$
\begin{gather*}
R_{\delta}=\frac{1}{6}\left(u_{G}^{+}\right)^{2}+(K E)^{-1}\left[\left\{1-\left(2 / K u_{G}^{+}\right)\right\} \exp \left(K u_{G}^{+}\right)+\left(2 / K u_{G}^{+}\right)+1\right. \\
\left.-\frac{1}{6}\left(K u_{G}^{+}\right)^{2}-\frac{1}{12}\left(K u_{G}^{+}\right)^{3}-\frac{1}{40}\left(K u_{G}^{+}\right)^{4}-\frac{1}{180}\left(K u_{G}^{+}\right)^{5}\right], \tag{28}\\
R_{x}=\frac{1}{12}\left(u_{G}^{+}\right)^{2}+\left(K^{3} E\right)^{-1}\left[\left\{6-K u_{G}^{+}+\left(K u_{G}^{+}\right)^{2}\right\} \exp \left(K u_{G}^{+}\right)-6\right. \\
\left.-2 K u_{G}^{+}-\frac{1}{12}\left(K u_{G}^{+}\right)^{4}-\frac{1}{20}\left(K u_{G}^{+}\right)^{5}-\frac{1}{60}\left(K u_{G}^{+}\right)-\frac{1}{25} \frac{1}{2}\left(K u_{G}^{+}\right)^{7}\right], \tag{29}\\
\frac{1}{2} c_{f}=R_{\delta} / R_{x}, \tag{30}
\end{gather*}
$$

where $u_{f}^{+}=\left(2 / c_{f}\right)^{\frac{1}{2}}, K=0.4$ and $E=12$.
Figures 6, 7 and 8 show the comparison between the above three functions, equations (28), (29) and (30), and the incompressible turbulent boundary-layer experimental data from those references marked with a dagger. The agreement is good throughout the whole range of Reynolds number; indeed the values of E and K have been chosen so as to give a minimum value of root-mean-square error in a manner similar to that described above, Chi (1962). \dagger Now, our problem reduces to the determination of F_{c} and $F_{R \delta}$ as functions of Mach number and temperature ratio.

4.2. Determination of the F_{c}-function

Since the functions ψ_{δ}, ψ_{x}, and $\bar{\psi}$ are known [equations (28), (29) and (30)], and since numerous data for compressible turbulent boundary layers [references marked with a double dagger] have been collected, it might seem to be possible

[^2]to deduce the F_{c} and $F_{R \delta}$ functions solely from experiment. An attempt to do this, however, soon showed that the data were too scanty and inaccurate to allow success. Some theoretical guidance is therefore sought for the determination of one of the functions. F_{c} is the obvious choice.

In §3, it was shown that theories based upon the mixing-length hypothesis of tables I and 2 gave the best prediction of all the previous theories; it was also discovered that the corresponding methods lead to the following expression for F_{c}

$$
\begin{equation*}
F_{c}=\left[\int_{0}^{1}\left(\rho / \rho_{G}\right)^{\frac{1}{2}} d z\right]^{-2} . \tag{3I}
\end{equation*}
$$

The expression for $F_{R \delta}$, by contrast, varies considerably from one theory to the next. Equation (31) has been adopted for the F_{c} function in the present theory.

Figure 7. Comparison of equation (29) with uniform-property data, $c_{f} v s R_{x}$.

Fraure 8. Comparison of equation (30) with uniform-property data, $\bar{c}_{f} v s R_{x}$.
Evaluation of F_{c} from equation (31) requires the density to be expressed as a function of z, where z is defined as u / u_{G}. This relationship may be derived from the Reynolds analogy between energy and momentum transfer, modified for nonunity Prandtl number in the following manner.

From the Reynolds analogy, we have

$$
\begin{equation*}
\frac{h^{0}-h_{S}^{0}}{h_{G}^{0}-h_{S}^{0}}=\frac{u-u_{S}}{u_{G}-u_{S}}, \tag{32}
\end{equation*}
$$

where h^{0} is the stagnation enthalpy, u is the velocity in the x-direction, subscripts G and S refer to the main stream and the fluid adjacent to the wall, respectively.

Now $u_{S}=0, h^{0}=c\left(T+\frac{1}{2}(\gamma-1) M_{G}^{2} T_{G} z^{2}\right)$ for a perfect gas, $h_{S}^{0}=h_{S}=c T_{S}$, where c is the specific heat at constant pressure, and T is the temperature in degrees absolute. Equation (32) can then be written as

$$
\begin{equation*}
T / T_{G}=\left(T_{S} / T_{G}\right)+\left\{1+\frac{1}{2}(\gamma-1) M_{G}^{2}-\left(T_{S} / T_{G}\right)\right\} z-\frac{1}{2}(\gamma-1) M_{G}^{2} z^{2} . \tag{33}
\end{equation*}
$$

For the adiabatic-wall case, the coefficient of z of equation (33) is zero, and T_{S} is equal to the adiabatic-wall temperature, $T_{a d, s}$. Hence

$$
\begin{equation*}
T_{a d, S} / T_{G}=1+\frac{1}{2}(\gamma-1) M_{G}^{2} . \tag{34}
\end{equation*}
$$

This holds for a Prandtl number of unity. For non-unity Prandtl number,

$$
\begin{equation*}
T_{a d, S} / T_{G}=1+\frac{1}{2} r(\gamma-1) M_{G}^{2}, \tag{35}
\end{equation*}
$$

where r is the recovery factor. For gases of $P \approx 0.7$, measurements of recovery factor by various investigators, Brevoort \& Arabian (1958), Brinich (1961), Kaye (1954), Hilton (1951), Slack (1952) and Stalder, Rubesin \& Tendeland (1950), showed that the value of recovery factor lies between 0.88 and $0.9 ; 0.89$ is a fair mean of all measurements. Now equation (33) can be modified to satisfy the boundary condition at the wall for the adiabatic-wall case, by writing

$$
\begin{equation*}
T / T_{G}=\left(T_{S} / T_{G}\right)+\left\{1+\frac{1}{2} r(\gamma-1) M_{G}^{2}-\left(T_{S} / T_{G}\right)\right\} z-\frac{1}{2} r(\gamma-1) M_{G}^{2} z^{2}, \tag{36}
\end{equation*}
$$

where $r=0.89$ for $P \approx 0.7$. For an ideal gas at constant pressure,

$$
\begin{equation*}
\rho / \rho_{G}=\left(T / T_{G}\right)^{-1} . \tag{37}
\end{equation*}
$$

On substitution of equation (36) into equation (37), there is obtained

$$
\begin{equation*}
\rho / \rho_{G}=\left[\left(T_{S} / T_{G}\right)+\left\{1+\frac{1}{2} r(\gamma-1) M_{G}^{2}-\left(T_{S} / T_{G}\right)\right\} z-\frac{1}{2} r(\gamma-1) M_{G}^{2} z^{2}\right]^{-1} . \tag{38}
\end{equation*}
$$

Hence from equations (31) and (38), we have

$$
\begin{equation*}
F_{c}=\left\{\int_{0}^{1} \frac{d z}{\left[\left(T_{S} / T_{G}\right)+\left\{1+\frac{1}{2} r(\gamma-1) M_{\vec{G}}^{2}-\left(T_{S} / T_{G}\right)\right\} z-\frac{1}{2} r(\gamma-1) M_{G}^{2} z^{2}\right]^{\frac{1}{2}}}\right\}^{-2}, \tag{39}
\end{equation*}
$$

where $r=0.89$. Equation (39) is the F_{c} function which we have used.

4.3. Determination of the $F_{R \delta}$ function

Though the theoretically derived expressions for $F_{R \delta}$ are rather uncertain, they can generally be written as

$$
\begin{equation*}
F_{R \delta}=\left(\mu_{G} / \mu_{S}\right)\left(\rho_{S} / \rho_{G}\right)^{\beta}\left(E / E_{i}\right), \tag{40}
\end{equation*}
$$

where E_{i} is the value of E for uniform-property flow and is a constant. For example,
(a) In the van Driest-I method, $\beta=\frac{1}{2}, E=E_{i}$, hence

$$
\begin{align*}
F_{R \delta} & =\left(\mu_{G} / \mu_{S}\right)\left(\rho_{S} / \rho_{G}\right)^{\frac{1}{2}} \\
& =\left(T_{G} / T_{S}\right)^{1.26} \text { for } \quad \mu_{G} / \mu_{S}=\left(T_{G} / T_{S}\right)^{0.76} . \tag{41}
\end{align*}
$$

(b) In the van Driest-II method, $\beta=0, E=E_{i}$, hence

$$
\begin{align*}
F_{R \delta} & =\left(\mu_{G} / \mu_{S}\right) \\
& =\left(T_{G} / T_{S}\right)^{0.76} \quad \text { for } \quad \mu_{G} / \mu_{S}=\left(T_{G} / T_{S}\right)^{0.76} . \tag{42}
\end{align*}
$$

(c) In other methods, e.g. those of Kalikman (1956), Kutateladze \& Leont'ev (1961)

$$
\begin{equation*}
E / E_{i}=f\left(T_{N} / T_{S}\right) \tag{43}
\end{equation*}
$$

where T_{N} is the value of the temperature at some point near the wall.
Hence such theories commonly lead to an expression for $F_{R \delta}$ of the form

$$
\begin{equation*}
F_{R \delta}=\left(T_{S} / T_{G}\right)^{p}\left(T_{N} / T_{S}\right)^{n} \tag{44}
\end{equation*}
$$

where p and n are two constants which are still indeterminate and are to be determined from experiments as in the following paragraphs.

For the adiabatic-wall case, the temperature gradient at the wall is zero, and so the temperature near the wall is approximately equal to T_{S}. Hence equation (44) reduces to

$$
\begin{equation*}
F_{R \delta}=\left(T_{S} / T_{G}\right)^{p} \tag{45}
\end{equation*}
$$

Using the functions $\psi_{\delta}, \psi_{x}, \bar{\psi}$ and F_{c} of equations (28), (29), (30) and (39), respectively, and all the collected experimental data for the adiabatic-wall case (summarized in Appendix A and figures 1-3), we have determined the value of p which gives the smallest root-mean-square value of $\left(c_{f, \text { exp }}-c_{f, \text { th }}\right) / c_{f, \text { th }}$. This value of p is -0.702 . Thus, for the adiabatic-wall case,

$$
\begin{equation*}
F_{R \delta}=\left(T_{S} / T_{G}\right)^{-0.702} \tag{46}
\end{equation*}
$$

where T_{S} is of course the adiabatic-wall temperature which is obtained by equation (35).

The index q can be found from the drag coefficient in the presence of heat transfer. When there is heat transfer at the wall, the temperature gradient at the wall has a finite value and it is plausible that the ratio of the temperature in the vicinity of the wall to the wall temperature, T_{N} / T_{S}, is

$$
\begin{equation*}
T_{N} / T_{S}=1+z_{N}\left[d\left(T / T_{S}\right) / d z\right]_{S} \tag{47}
\end{equation*}
$$

where $z_{N}=u_{N}^{+} / u_{G}^{+}, u_{N}^{+}$is the value of u^{+}at the relevant distance from the wall. It is probable that u_{N}^{+}is small so that u_{G}^{+}is usually much larger than u_{N}^{+}; hence equation (47) can be written equally well as

$$
\begin{equation*}
T_{N} / T_{S}=\left\{1+\left[d\left(T / T_{S}\right) / d z\right]_{S}\right\}^{z_{N}} \tag{48}
\end{equation*}
$$

Now, by differentiation of equation (36), we obtain
then

$$
\begin{align*}
& \left(\frac{d\left(T / T_{S}\right)}{d z}\right)_{S}=\left(1+\frac{1}{2} r(\gamma-1) M_{G}^{2}-\frac{T_{S}}{T_{G}}\right) \frac{T_{G}}{T_{S}} \tag{49}\\
& T_{N} / T_{S}
\end{align*}
$$

Substituting equation (50) into equation (44), we have

$$
\begin{equation*}
F_{R \delta}=\left(T_{S} / T_{G}\right)^{p}\left(T_{a d, S} / T_{S}\right)^{q} \tag{51}
\end{equation*}
$$

where $p=-0.702$ obtained above and $q\left(=n z_{N}\right)$ is a constant to be determined empirically with the use of frictional-drag coefficient data in the presence of heat transfer. A computer program was written which varied q and minimized the
root-mean-square value of $\left(c_{f, \exp }-c_{f, \text { th }}\right) / c_{f, \text { th }}$ for all the available heat-transfer experiments, p being given the value -0.702 as derived earlier. The minimum root-mean-square error was found when q was 0.772 . The recommended $F_{R \delta}$ is accordingly

$$
\begin{equation*}
F_{R \delta}=\left(T_{S} / T_{G}\right)^{-0.702}\left(T_{a d, S} / T_{S}\right)^{0.772} \tag{52}
\end{equation*}
$$

which reduces to equation (46) for the adiabatic wall.

Figure 9. Comparison between theoretical and experimental $F_{c} c_{f}$ vs $F_{R_{\delta}} R_{\tilde{d}} . \times$, experiments, adiabatic; \bigcirc, experiments with heat transfer; - , theory equation (28).

Figure 10. Comparison between theoretical and experimental $F_{c} c_{f} v s F_{R_{x}} R_{x}$. \times, experiments, adiabatic; O, experiments with heat transfer; -, theory equation (29).

4.4. Comparison of the present method with other theories and experiments

The root-mean-square value of $\left(c_{f, \exp }-c_{f, \text { th }}\right) c_{f, \text { th }}$ for the present theory has been calculated and inserted in table 6 in order to compare it with the other theories. The present theory gives the lowest root-mean-square value, namely $9 \cdot 9 \%$. This is to be expected because we have derived $F_{R \delta}$ directly from the experi-
mental data. In figures $9-11$, the experimental and theoretical $F_{c} c_{f} v s F_{R \delta} R_{\delta}$, $F_{c} c_{f} v s F_{R x} R_{x}$ and $F_{c} \bar{c}_{f} v s F_{R x} R_{x}$ are plotted. The agreement between theory and experiments is again satisfactory.

Figure 11. Comparison between theoretical and experimental $F_{c} \bar{c}_{f} v s F_{R_{x}} R_{x} . \quad \times$, experiments, adiabatic; O, experiments with heat transfer; -, theory equation (30).

$F_{c} c_{f}$	$F_{c} \bar{c}_{f}$	$F_{R \delta} R_{\delta}$	$F_{R_{x}} R_{x}$	$F_{c} c_{f}$	$F_{c} \bar{c}_{f}$	$F_{R_{\delta}} R_{\delta}$	$F_{R_{r}} R_{x}$
0.0010	0.001117	2.878×10^{7}	5.758×10^{10}	0.0060	0.008205	$233 \cdot 0$	5.679×10^{4}
0.0015	0.001716	3.955×10^{5}	$4 \cdot 610 \times 10^{8}$	0.0065	0.009105	177.6	3.901×10^{4}
0.0020	0.002333	$5 \cdot 425 \times 10^{4}$	4.651×10^{7}	0.0070	0.010042	140.4	2.796×10^{4}
0.0025	0.002967	1.386×10^{4}	9.340×10^{6}	0.0075	0.011014	114.4	2.078×10^{4}
0.0030	0.003621	5030	2.778×10^{6}	0.0080	0.012016	95.62	1.592×10^{4}
0.0035	0.004299	2283	1.062×10^{6}	0.0085	0.01304	92.49	1.251×10^{4}
0.0040	0.005006	1208	4.828×10^{5}	0.0090	0.01409	70.91	1.006×10^{4}
0.0045	0.005747	716.0	2.492×10^{5}	0.0095	0.01516	62.55	8.253×10^{3}
0.0050	0.006526	462.3	1.417×10^{5}	0.0100	0.01624	55.87	6.883×10^{3}
0.0055	0.007345	319.4	8.697×10^{4}	0.0105	0.01732	50.46	5.826×10^{3}

Table 7. Values of $F_{c} c_{f}, F_{c} \bar{c}_{f}, F_{R_{\delta}} R_{\delta}$ and $F_{R_{x}} R_{x}$

4.5. Summary of results

To facilitate calculation, the main results derived earlier in this section are presented in the form of tables and figures. Table 7 gives the corresponding values of $F_{c} c_{f}$ and $F_{c} \bar{c}_{f} v s F_{R \delta} R_{\delta}$ and $F_{R x} R_{x}$, table 8 gives the values of F_{c} at various M_{G} and T_{S} / T_{G}, and table 9 gives the values of $F_{R \delta}$ at various M_{G} and T_{S} / T_{G}. Values from tables 8 and 9 are plotted in figure 12 for convenience of use.

4.6. Recommended method of calculation

In the most common cases, the problem is to find the drag coefficient when the Reynolds number, Mach number and temperature ratio are known. The procedure for solving this problem by use of the present method is as follows. First, the value of F_{c} is determined from table 8 or figure 12. Then the value of $F_{R \delta}$ is

$\backslash M_{G}$	0	1	2	3	4	5	6	7
T_{S} / T_{G}								
$0 \cdot 05$	0.3743	$0 \cdot 4036$	$0 \cdot 4884$	0.6222	0.7999	1.0184	1.2759	1.5713
$0 \cdot 1$	$0 \cdot 4331$	$0 \cdot 4625$	0.5477	0.6829	$0 \cdot 8628$	1.0842	$1 \cdot 3451$	1-6444
0.2	$0 \cdot 5236$	0.5530	$0 \cdot 6388$	0.7756	0.9584	$1 \cdot 1836$	1-4491	1.7534
$0 \cdot 3$	0.5989	$0 \cdot 6283$	0.7145	$0 \cdot 8523$	1.0370	1-2649	1.5337	1.8418
$0 \cdot 4$	$0 \cdot 6662$	$0 \cdot 6957$	0.7821	0.9208	1-1069	$1 \cdot 3370$	1-6083	1.9194
$0 \cdot 5$	0.7286	0.7580	$0 \cdot 8446$	0.9839	$1 \cdot 1713$	1-4031	1.6767	1.9903
$0 \cdot 6$	0.7873	$0 \cdot 8168$	0.9036	1.0434	1.2318	1-4651	1.7405	$2 \cdot 0564$
$0 \cdot 8$	$0 \cdot 8972$	$0 \cdot 9267$	1.0137	I-1544	$1 \cdot 3445$	1.5802	1-8589	2.1785
1	1.0000	1.0295	$1 \cdot 1167$	1.2581	$1 \cdot 4494$	1.6871	1.9684	$2 \cdot 2913$
2	1.4571	1-4867	1.5744	1.7176	1.9130	2. 1572	$2 \cdot 4472$	$2 \cdot 7809$
3	1-8660	1-8956	1.9836	$2 \cdot 1278$	$2 \cdot 3254$	$2 \cdot 5733$	$2 \cdot 8687$	$3 \cdot 2092$
4	$2 \cdot 2500$	$2 \cdot 2796$	$2 \cdot 3678$	$2 \cdot 5126$	$2 \cdot 7117$	$2 \cdot 9621$	$3 \cdot 2611$	$3 \cdot 6066$
5	$2 \cdot 6180$	$2 \cdot 6477$	$2 \cdot 7359$	$2 \cdot 8812$	3.0813	$3 \cdot 3336$	3.6355	3.9847
6	$2 \cdot 9747$	$3 \cdot 0044$	$3 \cdot 0927$	$3 \cdot 2384$	$3 \cdot 4393$	$3 \cdot 6930$	3.9971	$4 \cdot 3493$
8	$3 \cdot 6642$	$3 \cdot 6938$	$3 \cdot 7823$	$3 \cdot 9284$	$4 \cdot 1305$	$4 \cdot 3863$	$4 \cdot 6937$	5.0505
10	$4 \cdot 3311$	$4 \cdot 3608$	$4 \cdot 4493$	$4 \cdot 5958$	4.7986	5•0559	$5 \cdot 3657$	5•7259
12	4.9821	$5 \cdot 0117$	$5 \cdot 1003$	$5 \cdot 2470$	$5 \cdot 4504$	5•7088	6.0204	$6 \cdot 3832$
14	$5 \cdot 6208$	$5 \cdot 6505$	$5 \cdot 7391$	5•8860	6.0898	$6 \cdot 3491$	6.6621	7.0271
16	$6 \cdot 2500$	$6 \cdot 2797$	6.3683	6.5153	6.7196	6.9795	7.2937	$7 \cdot 6603$
18	6.8713	6.9010	6.9897	$7 \cdot 1368$	7.3413	$7 \cdot 6019$	7.9170	$8 \cdot 2851$
20	$7 \cdot 4861$	7.5157	7.6045	7.7517	7.9564	8.2175	8.5334	8.9027
25	9.0000	9.0297	9.1184	$9 \cdot 2658$	9.4711	9.7330	$10 \cdot 0505$	$10 \cdot 4222$
30	$10 \cdot 4886$	10.5183	10.6071	10.7546	10.9602	11.2228	11.5415	11.9149
	8	9	10	11	12	13	14	15
T_{S} / T_{G}								
	1.9041	$2 \cdot 3738$	$2 \cdot 6803$	$3 \cdot 1233$	$3 \cdot 6027$	4-1186	$4 \cdot 6707$	$5 \cdot 2591$
$0 \cdot 1$	1.9812	$2 \cdot 3552$	$2 \cdot 7660$	$3 \cdot 2134$	$3 \cdot 6976$	$4 \cdot 2180$	$4 \cdot 7748$	5-3680
0.2	$2 \cdot 0958$	$2 \cdot 4756$	$2 \cdot 8925$	$3 \cdot 3462$	3.8366	$4 \cdot 3636$	4.9269	$5 \cdot 5267$
0.3	$2 \cdot 1882$	$2 \cdot 5723$	2.9937	$3 \cdot 4522$	3.9974	$4 \cdot 4792$	$5 \cdot 0475$	$5 \cdot 6523$
$0 \cdot 4$	$2 \cdot 2692$	$2 \cdot 6569$	$3 \cdot 0820$	$3 \cdot 5443$	$4 \cdot 0435$	$4 \cdot 5794$	$5 \cdot 1518$	$5 \cdot 7608$
0.5	$2 \cdot 3429$	$2 \cdot 7336$	$3 \cdot 1620$	$3 \cdot 6276$	4-1303	4-6697	$5 \cdot 2458$	$5 \cdot 8584$
0.6	$2 \cdot 4115$	$2 \cdot 8049$	$3 \cdot 2362$	$3 \cdot 7048$	$4 \cdot 2105$	$4 \cdot 7531$	$5 \cdot 3324$	$5 \cdot 9483$
0.8	2.5379	2.9360	$3 \cdot 3721$	$3 \cdot 8459$	4.3570	$4 \cdot 9051$	$5 \cdot 4901$	$6 \cdot 1117$
1	2-6542	$3 \cdot 0562$	$3 \cdot 4966$	3.9748	$4 \cdot 4905$	$5 \cdot 0434$	$5 \cdot 6333$	6.2599
2	3.1564	$3 \cdot 5725$	$4 \cdot 0282$	$4 \cdot 5228$	$5 \cdot 0556$	5•6263	$6 \cdot 2345$	$6 \cdot 8801$
3	3.5929	4.0184	$4 \cdot 4846$	4.9904	$5 \cdot 5353$	$6 \cdot 1187$	$6 \cdot 7401$	$7 \cdot 3993$
4	3.9964	$4 \cdot 4290$	$4 \cdot 9030$	$5 \cdot 4176$	$5 \cdot 9719$	6.5653	$7 \cdot 1972$	$7 \cdot 8673$
5	$4 \cdot 3792$	$4 \cdot 8174$	$5 \cdot 2979$	$5 \cdot 8196$	$6 \cdot 3817$	6.9833	$7 \cdot 6240$	$8 \cdot 3033$
6	4.7477	$5 \cdot 1905$	5.6764	$6 \cdot 2041$	$6 \cdot 7727$	7.3814	8.0297	$8 \cdot 7169$
8	5.4549	$5 \cdot 9050$	6.3994	6.9368	7.5161	$8 \cdot 1365$	$8 \cdot 7972$	$9 \cdot 4977$
10	$6 \cdot 1347$	6.5904	7.0913	$7 \cdot 6363$	$8 \cdot 2241$	$8 \cdot 8539$	$9 \cdot 5247$	10.2359
12	6.7955	7.2556	7.7618	$8 \cdot 3129$	$8 \cdot 9077$	9.5452	$10 \cdot 2245$	10.9449
14	$7 \cdot 4422$	7.9058	$8 \cdot 4164$	8.9727	$9 \cdot 5734$	10.2174	10.9040	11.6321
16	8.0778	8.5444	$9 \cdot 0587$	9.6194	10.2251	10.6748	11.5676	12.3026
18	$8 \cdot 7045$	$9 \cdot 1737$	$9 \cdot 6912$	10.2556	10.8657	11.5204	12.2187	12.9598
20	9.3238	$9 \cdot 7952$	10.3154	10.8832	11.4971	12.1562	12.8595	13.6059
25	$10 \cdot 8467$	11.3225	11-8482	$12 \cdot 4227$	13.0446	13.7128	14.4263	15.1841
30	$12 \cdot 3418$	$12 \cdot 8209$	13.3509	13.9305	14.5586	15.2339	15.9556	16.7225
Table 8. Values of F_{c} at various M_{G} and T_{S} / T_{G}								

	$M_{G} \quad 0$	1	2	3	4	5	6	7
T_{S} / T_{G}								
$0 \cdot 05$	$82 \cdot 7405$	93.8950	$125 \cdot 3092$	$173 \cdot 1153$	234-1638	306.3489	$388 \cdot 2642$	$478 \cdot 9229$
$0 \cdot 1$	29.7852	$33 \cdot 8006$	45-1092	$62 \cdot 3185$	$84 \cdot 2949$	110-2803	139.7684	$172 \cdot 4040$
$0 \cdot 2$	10.7221	$12 \cdot 1676$	16.2385	$22 \cdot 4336$	$30 \cdot 3447$	39.6990	50.3142	$62 \cdot 0625$
$0 \cdot 3$	$5 \cdot 8983$	$6 \cdot 6934$	8.9328	$12 \cdot 3407$	16.6926	21.8384	27.6779	34-1406
$0 \cdot 4$	$3 \cdot 8598$	$4 \cdot 3801$	$5 \cdot 8456$	8.0757	10.9236	14-2910	$18 \cdot 1123$	$22 \cdot 3414$
$0 \cdot 5$	$2 \cdot 7779$	3•1524	$4 \cdot 2071$	$5 \cdot 8121$	$7 \cdot 8618$	$10 \cdot 2853$	13.0355	$16 \cdot 0792$
$0 \cdot 6$	2-1233	$2 \cdot 4095$	$3 \cdot 2157$	$4 \cdot 4424$	$6 \cdot 0091$	7.8615	9.9636	12.2900
$0 \cdot 8$	$1 \cdot 3895$	1.5768	$2 \cdot 1043$	$2 \cdot 9071$	$3 \cdot 9323$	$5 \cdot 1445$	6.5201	$8 \cdot 0425$
1	$1 \cdot 0000$	1-1348	1.5145	$2 \cdot 0923$	$2 \cdot 8301$	$3 \cdot 7025$	$4 \cdot 6926$	$5 \cdot 7883$
2	$0 \cdot 3600$	$0 \cdot 4085$	$0 \cdot 5452$	0.7532	1.0188	1.3328	1-6892	$2 \cdot 0837$
3	$0 \cdot 1980$	$0 \cdot 2247$	$0 \cdot 2999$	$0 \cdot 4143$	$0 \cdot 5604$	0.7332	0.9292	$1 \cdot 1462$
4	$0 \cdot 1296$	$0 \cdot 1471$	$0 \cdot 1963$	0.2711	$0 \cdot 3667$	$0 \cdot 4798$	$0 \cdot 6081$	$0 \cdot 7501$
5	$0 \cdot 0933$	$0 \cdot 1058$	0.1412	$0 \cdot 1951$	$0 \cdot 2639$	$0 \cdot 3453$	$0 \cdot 4377$	0.5398
6	$0 \cdot 0713$	$0 \cdot 0809$	$0 \cdot 1080$	$0 \cdot 1491$	$0 \cdot 2017$	$0 \cdot 2639$	0.3345	$0 \cdot 4126$
8	$0 \cdot 0466$	0.0529	0.0706	$0 \cdot 0976$	$0 \cdot 1320$	$0 \cdot 1727$	0.2189	$0 \cdot 2700$
10	$0 \cdot 0336$	0.0381	$0 \cdot 0508$	$0 \cdot 0702$	$0 \cdot 0950$	$0 \cdot 1243$	$0 \cdot 1575$	$0 \cdot 1943$
12	0.0257	0.0291	0.0389	$0 \cdot 0537$	0.0726	0.0950	$0 \cdot 1204$	0.1485
14	$0 \cdot 0204$	0.0232	0.0310	0.0428	$0 \cdot 0579$	$0 \cdot 0757$	0.0959	$0 \cdot 1183$
16	$0 \cdot 0168$	0.0191	0.0254	$0 \cdot 0351$	$0 \cdot 0475$	0.0622	0.0788	$0 \cdot 0972$
18	$0 \cdot 0141$	0.0160	0.0214	$0 \cdot 0295$	$0 \cdot 0400$	0.0523	$0 \cdot 0662$	$0 \cdot 0817$
20	$0 \cdot 0121$	0.0137	0.0183	$0 \cdot 0253$	0.0342	$0 \cdot 0447$	$0 \cdot 0567$	$0 \cdot 0700$
25	$0 \cdot 0087$	0.0099	0.0132	$0 \cdot 0182$	$0 \cdot 0246$	$0 \cdot 0322$	$0 \cdot 0408$	$0 \cdot 0503$
30	$0 \cdot 0066$	0.0075	0.0101	$0 \cdot 0139$	$0 \cdot 0188$	$0 \cdot 0246$	0.0312	$0 \cdot 0385$
$\stackrel{M_{G}}{T_{S} / T_{G}}$		9	10	11	12	13	14	15
		$T_{S} / T_{G} \backslash$						
0.05	577.5949	$683 \cdot 7162$	796.8344	916.5768	$1042 \cdot 629$	$1174 \cdot 722$	$1312 \cdot 620$	$1456 \cdot 116$
$0 \cdot 1$	207.9243	$246 \cdot 1261$	286.8467	329.9519	375-3286	422-8798	$472 \cdot 5207$	$524 \cdot 1767$
$0 \cdot 2$	74.8492	$88 \cdot 6012$	$103 \cdot 2599$	118.7770	$135 \cdot 1119$	$152 \cdot 2295$	$170 \cdot 0993$	188.6946
$0 \cdot 3$	41-1745	48.7395	56.8032	$65 \cdot 3392$	$74 \cdot 3250$	83.7414	93.5716	$103 \cdot 8009$
$0 \cdot 4$	26.9444	31-8949	37.1718	$42 \cdot 7577$	$48 \cdot 6380$	$54 \cdot 8000$	$61 \cdot 2328$	67.9268
0.5	19.3920	$22 \cdot 9549$	26.7527	30.7729	35.0050	39.4398	$44 \cdot 0696$	48.8873
0.6	14.8221	$17 \cdot 5454$	$20 \cdot 4482$	$23 \cdot 5210$	26.7557	30.1455	$33 \cdot 6842$	$37 \cdot 3665$
0.8	9.6995	$11 \cdot 4816$	$13 \cdot 3812$	15.3920	17.5088	19.7271	22.0428	$24 \cdot 4525$
1	6.9808	8.2634	$9 \cdot 6305$	$11 \cdot 0777$	$12 \cdot 6012$	$14 \cdot 1977$	$15 \cdot 8643$	17.5986
2	$2 \cdot 5130$	$2 \cdot 9747$	$3 \cdot 4668$	$3 \cdot 9878$	$4 \cdot 5362$	5•1109	$5 \cdot 7109$	$6 \cdot 3352$
3	$1 \cdot 3824$	1.6364	1.9071	$2 \cdot 1937$	$2 \cdot 4954$	$2 \cdot 8115$	3.1416	3-4850
4	0.9046	1.0708	1.2480	1.4355	$1 \cdot 6330$	1.8398	$2 \cdot 0558$	$2 \cdot 2806$
5	0.6511	$0 \cdot 7707$	$0 \cdot 8982$	1.0332	$1 \cdot 1752$	$1 \cdot 3241$	1.4796	1-6413
6	$0 \cdot 4976$	$0 \cdot 5891$	$0 \cdot 6862$	0.7897	0.8983	1.0121	1•1309	1.2545
8	0.3256	$0 \cdot 3855$	$0 \cdot 4493$	0.5168	0.5878	$0 \cdot 6623$	0.7401	0.8210
10	$0 \cdot 2344$	$0 \cdot 2774$	$0 \cdot 3233$	$0 \cdot 3719$	$0 \cdot 4231$	$0 \cdot 4767$	$0 \cdot 5326$	$0 \cdot 5909$
12	$0 \cdot 1791$	0.2121	$0 \cdot 2471$	$0 \cdot 2843$	$0 \cdot 3234$	0.3643	$0 \cdot 4071$	$0 \cdot 4516$
14	$0 \cdot 1427$	$0 \cdot 1690$	$0 \cdot 1969$	$0 \cdot 2265$	$0 \cdot 2576$	$0 \cdot 2903$	$0 \cdot 3244$	0.3598
16	$0 \cdot 1172$	$0 \cdot 1388$	$0 \cdot 1617$	$0 \cdot 1860$	$0 \cdot 2116$	$0 \cdot 2384$	$0 \cdot 2664$	$0 \cdot 2955$
18	0.0985	$0 \cdot 1167$	$0 \cdot 1359$	$0 \cdot 1564$	$0 \cdot 1779$	0.2004	$0 \cdot 2239$	$0 \cdot 2484$
20	0.0844	0.0999	$0 \cdot 1164$	$0 \cdot 1339$	$0 \cdot 1523$	$0 \cdot 1716$	$0 \cdot 1917$	0.2127
25	0.0607	0.0719	$0 \cdot 0838$	0.0964	$0 \cdot 1096$	$0 \cdot 1235$	$0 \cdot 1380$	$0 \cdot 1531$
30	$0 \cdot 0464$	0.0549	0.0640	0.0737	$0 \cdot 0838$	0.0944	$0 \cdot 1055$	$0 \cdot 1170$
		${ }_{\text {Table }} 9$. Values of $F_{R_{\delta}}$ at various M_{G} and T_{S} / T_{G}						

determined from equation (52), table 9 or figure 12, and where necessary the value of $F_{R x}$ is obtained from the equation

$$
\begin{equation*}
F_{R x}=F_{R \delta} / F_{c} . \tag{25}
\end{equation*}
$$

Finally, by using the input value of R_{δ} (or R_{x}) and the values of $F_{R \delta}$ (or $F_{R x x}$) and F_{e} above, c_{f} or \bar{c}_{f} can be obtained from table 7 or figures 9-11.

Figure 12. Chart of constant F_{c} and $F_{R \delta}$ lines in T_{S} / T_{G} and M_{G} co-ordinates.
The above calculation can be performed in a few minutes with an accuracy of 1%. The latter is of course well within the limit of experimental accuracy at present.

5. Conclusions

In conclusion, the results of this work can be summarized as follows.
A procedure has been developed semi-empirically for predicting the drag coefficient on a smooth surface of zero stream-wise pressure gradient at various Reynolds numbers, Mach numbers and ratios of surface temperature to stream temperature.

The extent to which the procedure correlates the existing experimental data can be judged by inspection of figures $9-11$, whereby it must be remembered that the experiments have been carried out in several entirely different pieces of apparatus and are not of high or uniform accuracy. The correlation is better than that given by any of the other existing theories as can be seen from table 6 . The value of the present procedure is that it does not make use of the more arbitrary assumptions of earlier theories; it lets the data speak for themselves.
The procedure is simple and quick to use in engineering calculations and its accuracy is only limited (at the present time) by the accuracy of experimental data from which it is in part derived.

The necessary auxiliary functions have been tabulated (tables 7-9) and plotted in figures 9-12 for ready reference. However, it must be remembered
that experiments have not yet been carried out over the whole range of conditions covered by the tables and figures. Figure 4 shows how remarkably restricted has been the range of experimental conditions so far.

The procedure is capable of greater refinement when more accurate experimental data are available, say by modification of the $F_{R \delta}$ function. It can also be extended to include mass transfer (Spalding 1962b).

Finally, it should be noted that the calculation procedure which has been recommended is based on no new physical hypothesis. The expression recommended for F_{c} implies the assumption of one or other variety of the mixing-length theory; but the expression for $F_{R \delta}$ is entirely empirical. It may indeed be rather hard to find a physical hypothesis to fit the empirically derived $F_{R \delta}$ function; for, whereas the exponent of $\left(T_{S} / T_{G}\right)$ in equation (52) has a sign and magnitude which allows us to ascribe its effects to the role of the viscosity near the wall, the sign of the exponent of ($T_{a d, S} / T_{S}$) is quite unexpected. This point certainly deserves explanation. However, we have thought it better at the present stage to provide quantitative results against which old and new hypotheses can be tested than to advance such hypotheses ourselves.

REFERENCES

\dagger Аввот, I. H. 1953 AGARD Memo. AG/8M4.
Brevoort, M. J. \& Arabian, B. D. 1958 Nat. Adv. Comm. Aero., Wash., Tech. Note, no. 4248.
Brinich, P. F. 1961 Nat. Aero. Space Admin., Tech. Note, no. D-1047.
\dagger Brinich, P. F. \& Diaconis, N. S. 1952 Nat. Adv. Comm. Aero., Wash., Tech. Note, no. 2742.
*Burgraff, O. R. 1962 J. Aero. Sci. 29, 434.
Chapman, D. R. \& Kester, R. H. 1953 J. Aero. Sci. 20, 441.
\dagger Chapman, D. R. \& Kester, R. M. 1954 Nat. Adv. Comm. Aero., Wash., Tech. Note, no. 3097.
Chi, S. W. 1962 Unpublished work at Imperial College.
*Clemmow, D. M. 1950 Aero. Res. Counc., London, no. 14051, F.M. 1568, DGWRD Rep. 50/6.
†Coles, D. 1954 J. Aero. Sci. 21, 433.
*Coles, D. E. 1962 Rand Corporation, Rep. no. R-403-PR.
*Cope, W. F. 1943 Aero. Res. Counc., London, Rep. \& Mem., no. 2840.
\dagger Cope, W. F. 1952 Proc. Roy. Soc. A, 215, 84.
$\dagger \ddagger$ Dahwan, S. 1952 Nat. Adv. Comm. Aero., Wash., Tech. Note, no. 2567.
*Deissler, R. G. \& Loeffler, A. L. 1959 Nat. Aero. Space Admin., Tech. Rep., no. R-17.
*Donaldson, C. dup 1952 Nat. Adv. Comm. Aero., Wash., Tech. Note, no. 2962.
*Dorrance, W. H. 1960 Convair Sci. Res. Lab. Res. Rep. no. 6.
\ddagger Dutton, R. A. 1957 Aero. Res. Counc., London, Rep. Mem., no. 3058.
*Eckert, E. R. G. 1955 J. Aero. Sci. 22, 585.
\ddagger Falkner, V. M. 1943 Aircraft Engng, 15, 65.
*Ferrari, C. 1950 Quart. Appl. Math. 18, 33.
*Frankl, F. \& Voishel, V. 1937 Translation Nat. Adv. Comm. Aero., Wash., Tech. Note, no. 1052 (1943).
\dagger Goddard, F. E. 1959 J. Aero./Sp. Sci. 26, 1.
\dagger Hakkinen, R. J. 1955 Nat. Adv. Comm. Aero., Wash., Tech. Note, no. 3486.
\ddagger Hama, F. R. 1947 Rep. Inst. Sci. and Tech., Tokyo, Japan, 1, 13 and 19.
\dagger Hill, F. K. 1956 J. Aero. Sci. 23, 35.
\dagger Hill, F. K. 1959 Phys. Fluids, 2, 668.
Hilton, W. F. 1951 J. Aero. Sci. 18, 97.
\ddagger Hughes, G. 1952 Trans. Inst. Nav. Arch. 94, 287.
*Kalikman, L. E. 1959 Dokl. Akad. Nauk, SSSR, 106, 123.
Kaye, J. 1954 J. Aero. Sci. 21, 117.
\ddagger Kempf, G. 1929 Werft, Reed., Hafen. 11, 234.
\ddagger Klebanoff, P. S. \& Diehl, Z. W. 1951 Nat. Adv. Comm. Aero., Wash., Tech. Note, no. 2475.
\dagger Korkegi, R. H. 1956 J. Aero. Sci. 23, 97.
*Kosterin, S. I. \& Koshmarov, Y. A. 1960 Soviet Phys. 4, 819.
*Kutateladze, S. S. \& Leont'ev, A. I. 1961 Discussion of Heat and Mass Transfer, Akcad. Nauk BSSR, Minsk, 1, Translation TIL T5258.
\ddagger Landweber, L. \& Siao, T. T. 1958 J. Ship Res. 1, 21.
*Li, T. Y. \& Nagamatsu, H. T. 1951 J. Aero. Sci. 18, 696.
*Lin, C. C. \& Shen, S. F. 1951 Nat. Adv. Comm. Aero., Wash., Tech. Note, no. 2542.
\ddagger Ludwig, H. \& Tillmann, W. 1949 Translation Nat. Adv. Comm. Aero., Wash., Tech. Mem., no. 1285.
$\dagger \ddagger$ Matting, F. M., Chapman, D. R., Nyholm, J. R. \& Thomas, A. G. 1951 Nat. Aero. Space Admin., Tech. Rep., no. R-82.
\ddagger Mickley, H. S. \& Davis, R. S. 1957 Nat. Adv. Comm. Aero., Wash., Tech. Note, no. 4017.
*Monaghan, R. J. 1950 Aero. Res. Counc., London, no. CP 45.
\dagger Monaghan, R. J. \& Cooke, J. R. 1953 a Aero. Res. Counc., London, no. CP 139.
\dagger Monaghan, R. J. \& Cooke, J. R. $1953 b$ Aero. Res. Counc., London, no. CP 140.
\dagger Monaghan, R. J. \& Johnson, J. E. 1952 Aero. Res. Counc., London, no. CP 64.
\dagger †'Donell, R. M. 1954 Nat. Adv. Comm. Aero., Wash., Tech. Note, no. 3122.
\dagger Pappas, C. C. 1954 Nat. Adv. Comm. Aero., Wash., Tech. Note, no. 3222.
Peterson, J. B. 1963 Nat. Aero. Space Admin., Tech. Note, no. D-1795.

* \dagger Rubesin, M. W., Maydew, R. C. \& Varga, S. A. 1951 Nat. Adv. Comm. Aero., Wash., Tech. Note, no. 2305.
Schlichting, H. 1960 Boundary Layer Theory, 2nd ed. Translated by J.Kestin. London: McGraw-Hill.
\ddagger Schoenherr, K. E. 1932 Trans. Soc. Nav. Arch. Mar. Engrs, 40, 279.
\ddagger Schultz-Grunow, F. 1940 Translation Nat. Adv. Comm. Aero., Wash., Tech. Note, no. 986.
*Shen, S. F. 1951 Nat. Adv. Comm. Aero., Wash., Tech. Note, no. 2543.
Slack, E. G. 1952 Nat. Adv. Comm. Aero., Wash., Tech. Note, no. 2686.
\ddagger Smith, D. W. \& Walker, J. H. 1958 Nat. Adv. Comm. Aero., Wash., Tech. Note, no. 423.
*Smith, F. \& Harrop, R. 1946 Roy. Aircraft Estmt, Tech. Note, Aero. 1759.
*†Sommer, S. C. \& Short, B. J. 1955 Nat. Adv. Comm. Aero., Wash., Tech. Note, no. 3391.
Spalding, D. B. 1962 a Int. J. Heat Mass Transfer, 5, 1133.
Spalding, D. B. 1962 b Northern Research and Engineering Corporation, Camb., Mass. Rep. no. 1058.1.
*Spence, D. A. 1959 Roy. Aircraft Estmt, Rep. Aero. 2631.
\dagger Spivak, H. M. 1950 Aero. Phys. Lab., Nor. Am. Aviation, Inc., Rep. no. CM-615, CAL-1052.
Stalder, J. R., Rubesin, M. W. \& Tendeland, T. 1950 Nat. Adv. Comm. Aero., Wash., Tech. Note, no. 2077.
*Tucker, M. 1951 Nat. Adv. Comm. Aera., Wash., Tech. Note, no. 2337.
* van $^{\text {Driest, E. R. } 1951 ~ J . ~ A e r o . ~ S c i . ~ 18, ~} 145$.
*vain $^{\text {Driest, E. R. } 195550 \text { Years of Boundary Layer Theory (Ed. H. Görtler and }}$ W. Tollmien), p. 257. Braunschweig: F. Vieweg u. Sohn.
*von Kármán, Th. 1935 Proc. 5th Volta Congress, Rome, p. 255.
\ddagger Wieghart, K. 1944 Translation Nat. Adv. Comm. Aero., Wash., Tech. Mem., no. 1314 (1951).
*†Wilson, R. E. 1950 J. Aero. Sci. 17, 585.
* \dagger Winkler, E. M. 1961 J. Appl. Mech., Trans A.S.M.E. 28, Ser. E, 323.
*Young, C. B. M. \& Janssen, E. 1952 J. Aero. Sci. 19, 229.

Appendix

Summary of the methods of evaluating R_{δ} integral, approximations A and B, appearing in tables 1-4
Approximate analytical (A)
Taking equation (3) of § 2.2, for example, we have

$$
\begin{equation*}
R_{\delta}=\frac{\mu_{S} K u_{G}^{+2}}{\mu_{G} E} \int_{0}^{1} \phi^{3} z(1-z) \exp \left\{K u_{G}^{+} \int_{0}^{z} \phi d z\right\} d z \tag{3}
\end{equation*}
$$

As the magnitude of the integrand is small at small z,

$$
\int_{0}^{z} \phi d z
$$

is replaced by $N z$, where

$$
N=\frac{1}{0 \cdot 9} \int_{0}^{0.9} \phi d z
$$

the equation (3) now becomes

$$
\begin{equation*}
R_{\delta}=\frac{\mu_{S} K u_{G}^{+2}}{\mu_{G} E} \int_{0}^{1} \phi^{3} z(1-z) \exp \left(K N u_{G}^{+} z\right) d z \tag{A1}
\end{equation*}
$$

On integrating equation (A 1) by parts twice, there is obtained

$$
\begin{align*}
R_{\delta}= & \frac{\mu_{S} u_{G}^{+}}{\mu_{G} E N}\left[\phi^{3} z(1-z) \exp \left(K N u_{G}^{+} z\right)\right. \\
& \left.\quad-\int_{0}^{1}\left[\phi^{3}(1-2 z)+z(1-z)\left(d \phi^{3} / d z\right)\right] \exp \left(K N u_{G}^{+} z\right) d z\right]_{0}^{1} \\
= & \frac{\mu_{S}}{\mu_{G} K N^{2} E}\left[\phi^{3} \exp \left(K N u_{G}^{+} z\right)\right]_{0}^{1}+\text { smaller terms } \\
\approx & \frac{\mu_{S} \phi_{G}^{3}}{\mu_{G} K E N^{2}} \exp \left(K N u_{G}^{+} z\right) \tag{A2}
\end{align*}
$$

Hence

$$
\begin{equation*}
R_{\delta}=\frac{\mu_{S} \phi_{G}^{3}}{\mu_{G} N^{2} K \bar{E}} \exp \left\{K N\left(\frac{2 T_{G}}{c_{f} T_{S}}\right)^{\frac{1}{2}}\right\} \tag{A3}
\end{equation*}
$$

Approximate analytical (B)
Taking equation (3) of $\S 2.2$, for example, we have

$$
\begin{equation*}
R_{\delta}=\frac{\mu_{S} K u_{G}^{+2}}{\mu_{G} E} \int_{0}^{1} \phi^{3} z(1-z) \exp \left(K u_{G}^{+} \int_{0}^{z} \phi d z\right) d z \tag{3}
\end{equation*}
$$

Equation (3) is re-written as

$$
\begin{equation*}
R_{\delta}=\frac{\mu_{S} K u_{G}^{+2}}{\mu_{G} E} \exp \left(K u_{G}^{+} \int_{0}^{1} \phi d z\right) \int_{0}^{1} \phi^{3} z(1-z) \exp \left(K u_{G}^{+} \int_{1}^{z} \phi d z\right) d z \tag{Bl}
\end{equation*}
$$

Replace

$$
\exp \left(K u_{\dot{G}}^{+} \int_{1}^{z} \phi d z\right) \text { by } z^{n}
$$

where n is so chosen that the gradient is the same, then, on differentiation, we have $K u_{G}^{+} \phi=n$. Now equation ($\mathrm{B} 1_{1}$) can be re-written as

$$
\begin{align*}
R_{\delta} & \approx \frac{\mu_{S} K u_{G}^{+2}}{\mu_{G} E} \exp \left(K u_{G}^{+} \int_{0}^{1} \phi d z\right) \int_{0}^{1} \phi^{3} z(1-z) z^{n} d z \\
& \approx \frac{\mu_{S} \phi_{G}^{3} K u_{G}^{+2}}{\mu_{G} E} \exp \left(K u_{G}^{+} \int_{0}^{1} \phi d z\right) \int_{0}^{1}\left(z^{n+1}-z^{n+2}\right) d z \\
& =\frac{\mu_{S} \phi_{G}^{3} K u_{G}^{+} \exp \left(K u_{G}^{+} \int_{0}^{1} \phi d z\right)}{\mu_{G}\left[E\left(K^{\top} \phi_{G} u_{G}^{+}+2\right)\left(\bar{K} \phi u_{G}^{+}+3\right)\right]} . \tag{B2}
\end{align*}
$$

As $K u_{G}^{+} \phi \gg 3$ in general, equation (B2) can be approximately written as

Hence

$$
\begin{gather*}
R_{\delta}=\frac{\mu_{S} \phi_{\theta}}{\mu_{G} K E} \exp \left(K u_{G}^{+} \int_{0}^{1} \phi d z\right) . \tag{B3}\\
R_{\delta}=\frac{\mu_{S} \phi_{G}}{\mu_{G} K E} \exp \left\{K\left(\int_{0}^{1} \phi d z\right)\left(\frac{2 T_{G}}{c_{f} T_{S}}\right)^{\frac{1}{2}}\right\} . \tag{B4}
\end{gather*}
$$

[^0]: * A mnemonic: $G \equiv$ gas stream; $S \equiv$ surface.

[^1]: * For the sake of simplicity, here and on some other occasions, c_{f} stands for both c_{f} and \bar{c}_{f}, as is clear in the text.

[^2]: * These are of course not the only equations which may be used; and they are certainly not the simplest. They are used because they are consistent with a formula for the universal velocity profile which is both simple and in good agreement with experimental data.
 \dagger On a c_{f} basis, the root-mean-square error would be about 2%.

