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The drag of a compressible turbulent boundary layer
on a smooth flat plate with and without heat transfer

By D. B. SPALDING AND S. W, CHI

Mechanical Engineering Department,
Imperial College of Science and Technology, London, S.W. 7

(Received 10 May 1963)

The theoretical treatments given by earlier authors are classified, reviewed and
where necessary extended; then the predictions of twenty of these theories are
evaluated and compared with all available experimental data, the root-mean-
square error being computed for each theory. The theory of van Driest—1I gives
the lowest root-mean-square error (11-0 9;).

A new calculation procedure is developed from the postulate that a unique
relation exists between ¢, F, and RFy, where c, is the drag coefficient, £ is the
Reynolds number, and F, and Fy, are functions of Mach number and temperature
ratio alone. The experimental data are found to be too scanty for both F, and Fy,
to be deduced empirically, so F, is calculated by means of mixing-length theory
and Ff, is found semi-empirically. Tables and charts of values of ¥, and Fy, are
presented for a wide range of M, and Ti/T;. When compared with all experi-
mental data, the predictions of the new procedure give a root-mean-square error
of 9-9 9.

1. Introduction

In many circumstances of interest to aeronautical engineers, it is necessary to
predict the frictional drag at a surface along which a gas is flowing at high speed
and through which heat is being transferred. This is not only important in the
prediction of the frictional drag itself but also in the prediction of the heat
transfer, for example by means of a ‘modified Reynolds analogy’. This know-
ledge is required in connexion with many processes, for example, in the cooling of
combustion-chamber walls, gas-turbine blades, hypersonic ram-jet intakes,
rocket-motor nozzles and high-speed aircraft skins.

Often the velocity of the mainstream fluid is not uniform. In a rocket-nozzle
it increases with distance downstream, whilst in a ram-jet intake it decreases;
the main-stream pressure is accordingly non-uniform. Despite these facts, it is
necessary to restrict attention in the present paper mainly to the case in which
the pressure gradient is zero; that is, to that of the boundary layer on a flat plate.
The reason is that this is the simplest case, which must be understood first.

There have been numerous investigations of the problem, both theoretical and
experimental; these will be described in some detail in the following §§2, 3.
Nevertheless, as will appear below, present knowledge of the subject is defective
in two respects. First, there is considerable uncertainty as to which of various
theories gives the best prediction; for each theory contains fairly drastic simplifi-
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cations, and has usually been compared with only a small selection of the avail-
able experimental data. Secondly, some of the methods of prediction (including
unfortunately those which give the most accurate predictions) are difficult to
use; the prospective user of the method has to carry out extensive numerical
work, because the necessary auxiliary functions have not been computed and
tabulated once for all.

It is intended below to pay particular attention to remedying the above
defects. As far as possible, uncertainty will be eliminated by comparing the
existing theories with all published experimental data and by developing a new
calculation procedure based upon accumulated theoretical and experimental
knowledge of the compressible turbulent boundary layer; and graphs and tables
will be presented which permit friction to be calculated for a wide range of condi-
tions as a result of merely a few minutes’ work,

The tables cover Mach numbers (M;) between 0 and 15, and ratios of wall
temperature to main-stream temperature (7y/7;) between 0-05 and 30.

Sections 2 and 3 below are mainly devoted to a review of earlier work. These lead
to a development of the present method which is presented in §4. Readers solely
concerned with the use of the method should turn to §4.6 which contains a
summary of the prediction procedures which are recommended for use.

Notation

a,b see equations (13) and (14)

local frictional drag coefficients based upon main-stream fluid properties,
equation (17)

overall frictional drag coefficient based upon main-stream fluid pro-
perties, equation (26)

E a constant, equation (2)

function multiplying ¢; in universal drag law, equations (11) and (19)

I function multiplying ¢, in universal drag law, equation (11)

function multiplying E; in universal drag law, equations (12) and (20)

function multiplying E, in universal drag law, equations (12) and (25)

specific enthalpy, equation (32), (B.Th.U./lb.)

stagnation enthalpy, equation (32), (B.Th.U./Ib.)

a constant (~ 0-4), equation (2)

Mach number of main stream, equation (13)

exponents, equations (44) and (51)

Prandtl number, equation (36)

recovery factor, equation (35)

Reynolds number based upon momentum thickness and main-stream
fluid properties, equation (3)

Reynolds number based upon z and main-stream fluid properties,
equation (21)

temperature, equation (13), (°R)

veloeity in x-direetion, equation (1), (ft./h)

distance measured along main-stream direction from effective start of
turbulent boundary layer, implied in the definition of R,, (ft.)
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ut non-dimensional value of , equation (2)

Y distance from wall, equation (1), (ft.)

y+ non-dimensional value of ¥, equation (2)

z a different non-dimensional value of «, equation (2)
8 momentum thickness, equation (3), (ft.)

specific heat ratio, equation (13)
function appearing in equations (2), (5), ete.

functions appearing in the generalized drag laws, equations (18), (24)
and (27)

density, equation (1), (Ib./ft.3)
viscosity, equation (3), (Ib./ft.h)
shear stress in boundary layer, equation (1), (1b./ft. h?)

TED SN
D

Subscripts

average conditions in laminar sublayer
main-stream fluid state, equation (2)
uniform property flow, equation (43)
state near the wall, equation (43)

state at the wall, equation (2)

outer edge of laminar sublayer, table 1

2. Survey of previous theoretical work
2.1. General characteristics of analyses

There are a number of theories for the prediction of the frictional-drag coefficient
in the compressible turbulent boundary layer on a smooth flat plate (see the
references marked with an asterisk in the list at the end of the paper). According
to the nature of the principal assumptions used by various authors, the theories
can be grouped into five types, namely, (i) theories based upon the Prandtl
differential equation, (ii) theories based upon the von Karman differential
equation, (iii) theories based upon other differential equations, (iv) theories
based upon a fixed velocity profile, and (v) theories based upon the incompressible
formulae with fluid properties inserted at a ‘reference’ state. The main features
of the analyses for each of those groups will be summarized in the following five
sections (§§2.2-2.6), and the characteristics of individual theories belonging to
these groups will be indicated in tables 1-5. Table 6 includes miscellaneous
analyses which do not belong to any of the five groups mentioned above.

2;2. Theories based wpon the Prandtl differential equation

By ‘the Prandtl differential equation’ we mean that postulated by Prandtl (see
Schlichting 1960, p. 477) relating the shear stress in the turbulent part of the
boundary layer to the velocity gradient and other properties, namely

. o [
T = pKy*® (c_lg) (1)
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With the assumption T = 74, the velocity distribution in the turbulent boundary
layer is derived, :
yt = Elexp (K?@f ¢dz) ) (2)
0

where y* = y(rep)ifis, ut = ul(rslpt, 2= wlug, ¢ = (plpg)t, K = a mixing
length constant, £ = an integrating constant, and subscript G refers to the main
stream, i.e. the outer ‘edge’ of the boundary layer, subscript S refers to the fluid
conditions immediately adjacent to the wall, i.e. to the inner ‘edge’ of the
boundary layer.*

Equation (2) leads to the integral for R;:

R, = /;S f $%(1 —z)exp( Cu f ¢dz) (3)
where RSE'L—)G—uGﬁ, stfygf- kd ( ——)dy
el 0 PgUq Ug

The above features are common to all analyses of this group. The differences
between them are in either: (i) an hypothesis for £ (or other method of deter-
mining the integration constant), (ii) the nature of the ¢ function, or (iii) the
method of evaluating the R; integral. Accordingly, the individual members of
the group are distinguished by the nature of these three items in table 1.

2.3. Theories based upon the von Kdrmdn differential equation
The differential equation postulated by von Karman (see Schlichting 1960,
p- 485) as the connexion between 7, du/dy and other quantities is
7 = pK*(du/dy)*|(d*u/dy?)>. (4)

The assumption 7 = 74 leads to the velocity distribution

y+ = (K|E) f:+ exp (Kufg f:gbdz) du*. (5)

This leads further to the R; integral

Ry = 'ZS Eu”f P%(1—=z)exp (Au,(,f ¢dz)dz (6)

Equations (4)—(6) are common to all the methods of this group; individual
methods are classified in table 2 by reference to either (i) their hypotheses for E,
(i1) the nature of the ¢ function, or (iii) the method of evaluating the R integral.

2.4. Theories based upon other differential equations

Analyses of this group start from various differential equations but the assump-
tion of 7 = 75 is also made as in the above two groups (§§2.2, 2.3). Generally
speaking, all proposed differential equations lead to equations for the velocity
distribution which are identical in form with (2) or (5). However, the nature of ¢
in this expression differs from that in §§2.2 and 2.3, that is, ¢ here is no longer

* A mnemonic: G = gas stream; S = surface.
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equal to (p/pg)}. The Reynolds-number integral for the analyses of the group is
either

rs K J‘l p ( [z )
Ry =2y t2 Lz2(l1—2)exp | Kuj dz)dz, 7
s 4o B e 0¢Ps( ) exp GJ0¢ (7)
1 -1
or R6=/§Eu52f ﬁz(l—z)exp (Kugf ¢dz)dz, (8)
ba B 0 Ps 0

depending on whether the velocity distribution of (2) or that of (5) is appropriate.
Methods of this group are distinguished in table 3 by reference to either (i) the
nature of the differential equation, or (ii) the method of evaluating the R,
integral.

2.5, Theories based upon a fixed velocity profile

In this group, it is assumed that the velocity profile is independent of com-

pressibility, for example, y+ = B-texp (Ku*), (9)
for which the R, integral becomes
ps K o f tp
Ry ="2—wut?| -2z(1-2)exp (Kug)dz. 10
8 he B (£ o Ps ( ) p( G) ( )

Methods of this group are distinguished in table 4 by reference to (i) the assumed
fixed veloeity profile, (ii) the expression for p/pg, and (iii) the method of evaluat-
ing the R; integral.

2.6. Theories based upon incompressible formulae with
reference properties

Methods of this group imply the existence of a universal relationship between
frictional-drag coefficient and Reynolds number, if properties are evaluated at
a reference temperature (or reference enthalpy). They are distinguished in
table 5 by reference to (i) the method by which the reference temperature was
determined, and (ii) the expression for T/ or (hg/kg).

2.7. Miscellanzous other methods

Methods which do not belong to those groups discussed in §§2.2-2.6 include the
use of various transformations and the direct use of empirical data. We have
placed in this category the theories of Lin & Shen (1951), Shen (1951), Donaldson
(1952), Spence (1959), Winkler (1961), Burgraff (1962) and Coles (1962).

The validity of the assumptions and simplifications involved in various
theories can only be verified by comparison with experiment. This will be done
systematically in the next section.

3. Comparison between the theoretically and experimentally obtained

data 3.1. Purpose of comparison

As pointed out above, all theoretical treatments discussed in § 2 have been based
upon assumptions and simplifications. Further, their predictions differ signifi-
cantly, as has been shown, for example, by Chapman & Kester (1953) for the
adiabatic-wall case. It is therefore necessary to establish the relative validity of
all theories by comparing them with experimental data. Other authors, for
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example, Rubesin, Maydew & Varga (1951), Sommer & Short (1955), Monaghan
(1950), Matting, Chapman, Nyholm & Thomas (1961), Winkler (1961) and
Peterson (1963) have compared some theories with experiments; but they either
used relatively few sets of experimental data or used a qualitative method of
comparison in the form of numerous figures, so their conclusions are still rather
indecisive. We shall compare the various theories with all published experi-
mental data of ¢, and ¢, versus E; and R, at various M, and Tg/T, and shall
evaluate for each theorya quantitative measure of its agreement with experiment.
After that, we shall be able to see which of the available theories is best, and so
learn which assumptions for the compressible turbulent boundary layer are most
plausible. This examination forms the starting point for the development of an
improved calculation procedure, which is also presented below.

3.2. Experimental data

If experimental data were accurate, a few sets of data at desired conditions
(Mach number and heat-transfer rates) would suffice to test the validity of the
various theories. Such data are, however, not available. For this reason, the
greatest possible number of experimental data have been collected (see references
marked with a double dagger) and tabulated.* They include measurements on
a flat plate and on a cylinder with axis parallel to the stream direction and radius
large in comparison with the boundary-layer thickness. Figures 1-3 show the
collected data in the form of ¢, vs R, c,vs R, and ¢,vs R, and figure 4 shows the
conditions (i.e. values of M and Ts/T;) which have been explored experimentally.
Although it must be expected that the data are not all equally reliable, we have
made no attempt to estimate their accuracy or to introduce any corresponding
weighting factors.
3.3. Theoretical data

Theoretical friction-coefficient data corresponding to the experimental Reynolds
number (B; or R,), Mach number (M) and temperature ratio (T/T;) have been
obtained by the various methods discussed in §2; however, some authors have
not worked out all the relations which are required if their theories are to be
compared with all the collected experimental data. Extensions can, however, be
made to those theories without conflicting with the authors’ original argument.
The methods used by us in making the extensions are summarized below.
Conversion of R, to Rz and vice versa. The results of some analyses, viz. Clemmow
(1950}, Cope (1943), Monaghan (1950), Smith & Harrop (1946), Van Driest (1950,
1955), Wilson (1950) and the theories of table 5, imply that a unique relation
exists between ¢, F, and RFy where F, and Fy, are functions of Mach number and
temperature ratio alone. As will be shown in § 4, the relations between F, F;, Fy;
and Fp, are such that F =F, (11)
Fry, = Fro/F,, (12)
where F, and F} are the functions of M, and T/T,; multiplying ¢, and ¢, respec-
tively, and Fy; and Fy_ are the functions of M, and Ty/T; multiplying B; and B,

* The table is not printed here. Copies may be obtained by interested readers on
application to the authors.
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respectively. Hence equations (11) and (12) enable the determination of the
¢;vs R, relation of one of these theories from the corresponding ¢,vs R, or
c;vs R, relations, and vice versa.
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Extension of theories derived for the adiabatic wall to the case of heat transfer.
When only the adiabatic-wall case is considered and the Reynolds analogy
between momentum and energy transfer is assumed, as in the theories of Cope
(1943), Donaldson (1952), Wilson (1950), etc., the temperature-distribution
}yestion is T|Ty = 1-—-a2%?, (13)
where a? = [y —1) ME]/(1+ 5y - VM),
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102
M
520 TS/T(;:I(
[ —— equati()ns 3
X M i N &:‘1’ 32)
W |8 ®
— ks g .. o P
Cr A‘:‘S‘XO‘ ry ‘°:*°ﬁd§$; ‘”‘:a B
° YO 0 ?‘d: 2 L'y :L&:‘ h-x\
Xk ‘f" x*
X X
L X 0 ° P %X % x
%
° e :“o:’ﬁ; * K x)‘*) X x orx ik
x 5 *
S e T Iy
10-% b— 2
4x10° 108 107 4x107
R,

Ficure 3. Collected experimental data of ¢, vs R, in compressible turbulent
boundary layer. X, adiabatic; O, with heat transfer.

19 7
4]
1T 1 T 7 W[ 1
4
)
8 2
o/ G
5 &
&
8 6 ot
ET ©
og °
4 o
o © ?
o
8
2 { &O
uﬁ"‘”‘} o P4 °
0 2 4 6 8 10 12

M,
FicUrEe 4. Area of conditions explored experimentally.

z = u/ug, T = absolute temperature (°R), and suffixes G and S refer to free
stream and surface, respectively.

We have extended equation (13) to include the effect of heat transfer as
follows: T|Ty = 1+bz— a2 (14)
where b= [{1+3(y—1) MB/(Ts/Ts)] 1

and a® = {3y — D)ME} (T T).
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Viscosity law. The viscosity law recommended by the original authors has been
used in most cases for applying their theory to experimental conditions. When
this is not possible, or no law is recommended, the following power law has been

used Joc TO7S, (15)
Although Sutherland’s viscosity law, given by
T Tg+198°R
He Teg T+198°R
Monaghan\(1950)

(16)

Wilson (1950)

- Equation (18), T;=200°R
— Equation (17)

Cope (1943)

5 / / Equation (18), T5=300°R
k-]
=
3 ) __4von Kdrmién (1935)

/

0 2 4 6 8 10
Ts/Te

Ficure 5. Comparison of various viscosity-temperature laws.

is more accurate than the power law, the absolute value of 7', was not reported
by most experimenters. Figure 5 shows the viscosity-temperature relations used
in the various theories. Since x4 has only a weak influence on ¢, it is unlikely that
the use of different viscosity laws for different theories has any appreciable effect
on our final conclusions.

Drag laws for incompressible flow. Each of the authors whose works we have
studied incorporates in his theory, implicitly or explicitly, a relationship between
drag coefficient and Reynolds number (either E; or R,) valid for incompressible
flow. We have in each case used the relationship recommended by the author in
question, without attempting to calculate separately its effect on the accuracy
of the theory. However, in the Reynolds-number range of the experiments, the
drag coefficients calculated from the various formulae differ only by 1 or 2 9, so
there is no reason to expect that the use of a single relationship would have
appreciably modified our final conclusion.

3.4. Comparison between theories and experiments
Twenty out of twenty-nine collected theories (see references marked with an
asterisk) are compared in this report; they are believed to include all the essential
assumptions used by various authors. Nine theories (theories which have been
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compared are listed in table 6) are not included, either because they still have
indeterminate constants or because they involve lengthy time-consuming
numerical work which is believed not to be profitable at the present state of
knowledge of turbulence.

The criterion used for comparison is the root-mean-square of

(¢, exp — C7, 1n)/C7, tn>

where ¢; ., is the experimental local or overall friction coefficient and c; , is the
theoretical local or overall friction coefficient*, the corresponding experimental
Reynolds number (R, or R,), Mach number () and temperature ratio (Tg/T).
In evaluating the above root-mean-square value for each of 20 theories, all the
experimental data of Appendix A (plotted in figures 1-3) have been used.

The evaluation of the root-mean-square values of (s exp=—Cr n)/Cr,4n W8S
carried out by the Mercury digital computer of London University. A computer
program was written for each of the twenty theories. Then each theory was
applied to each of the 491 experimental conditions for which ¢, ,, data were
available, yielding appropriate values of ¢ ;. The root-mean-square value of
(€s, exp—Cf,1n)[Cs,1n Was then computed for each theory in an obvious manner.

The results of the comparison are shown in table 6. They give a quantitative
indication of the accuracy of the various theories when compared with present
empirical knowledge of the compressible turbulent boundary layer.

It is seen from table 6 that the three best theories are those of van Driest—I1
(1955), Wilson (1950) extended by us, and Kutateladze & Leont’ev (1961). They
are all based upon the mixing-length theory used in the method of §§2.2 or 2.3,
that is, tables 1 or 2. Table 6 also reveals that all theories exhibit a greater error
when compared with the data for finite heat-transfer rates than when compared
with data obtained under adiabatic conditions.

4. Development of an improved calculation procedure
4.1. Fundamental functions

We first seek a relation between c; and R;. For the constant-pressure boundary
layer, we may expect that
Cr = Cf(Rsa M, Ts[Tg)- (17)

The nature of the function can be determined either theoretically (§2) or
experimentally.

Now many of the theoretical expressions, viz. theories of Clemmow-I & 1I
(1950), Cope~1I (1943), Monaghan (1950), Smith & Harrop (1946), van Driest-1
& IT (1951, 1955), Spence (1959), Wilson (1950), Winkler (1961) and table 5 can

be written in the form
36, F, = Yry(R;s Fry), (18)
where the function ¢, is independent of Mach number and temperature ratio, the

* For the sake of simplicity, here and on some other occasions, ¢, stands for both
¢; and &, as is clear in the text.
9 Fluid Mech. 18
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effects of which are wholly accounted for by the functions F, and Fy;. The latter
functions are such that

Fc = Fc(MG, TS/TG),

=1, for ]PIG = 0, TS/TG =1; (19)
FR«S = FRB(MG: Ts/Ta)y
=1, for Ma =0, TS/T(; =1. (20)

Some of the other theoretical expressions, for example, those of Kutateladze &
Leont’ev (1961), and Burgraff (1962), if expressed in the form of equation (18),
would imply that F; exhibits a weak dependence on ¢;; however, this is by no
means certain, as is shown by our comparison between theories and experiments
(table 6) and we shall ignore this dependence.

10-2 T ]

w%ﬁ
Cr it Au

10-3
2102 10° 10° 3. 10¢
By

Ficure 6. Comparison of equation (28) with uniform-property data, ¢; vs Rg.

Secondly, we will consider the relation between ¢, and E,. The integral
momentum equation for the boundary layer on a flat plate (see Schlichting 1960,
|24
p- 536) leads to ic, = dR,[dR,. (21)

Rewriting equation (21) in integral form, we obtain

Rs
R, = f (2[c;)dRy. (22)
0
By multiplication of equation (22) by Fg,/F,, there is obtained
FR«S FrpsBRs 2
TR = [ Ry, (23)

We have already postulated the existence of a unique relation between ¢, ¥, and
R, Fps in equation (18), which is independent of Mach number and temperature
ratio. With this, equation (23) yields

%Cfﬁ:: = waz(RIFRz)’ (24)
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where the function ¢, is independent of Mach number and temperature ratio,
F, and Fg, are the same functions as those of equations (19) and (20), and Fy, is
related to F; and F, by

F Rx = Rb‘/ E

Finally, consider ¢; as a function of R,. From the definition of ¢,

o
K= (B | T (ef2)dR,, (26)
0
it can be shown by the method of the preceding paragraph that
2(’f = 71& R FRI)! (27)
where the function i is again independent of Mach number and temperature

ratio, and F, and Fy, are defined by equations (19) and (25).
To summarize, it has been shown that, if F; is independent of }c;, the following

functions exist, 16,F, = 5(Fes Ry, (18)
%CfE' = w.z(FRJJ'RI)’ (24)
“]Eéfﬁ:: = J(FRxRx)a (27)

where 5, ¥, and ¢ are independent of Mach number and temperature ratio.
Now analytic functions exist which adequately represent the relations between
3cpand Ry, dcpand R, and §¢; and R, in uniform-density flow (Spalding 1962a),

namely*
Ry = 3P+ (KEY™ [(1 - 2/ Ku)} exp (Kug) + (2] Kug) +1

—3(Kuf)? — 15K )P~ (Ku5)4—T§6(KuG) 1 (28)

+5(ud)?2 + (K3E) "1 [{6 - Kug + I&uG Hexp (Kuj)—6
—2Kuf — {5(Kuf )~ fo(Kud)® ~ o (Bud ) —55:(Kud)™),  (29)
3¢, = Ry/R,, (39)

where u = (2/c)t, K = 0-4 and E = 12.

Figures 6, 7 and 8 show the comparison between the above three functions,
equations (28), (29) and (30), and the incompressible turbulent boundary-layer
experimental data from those references marked with a dagger. The agreement
is good throughout the whole range of Reynolds number; indeed the values of
E and K have been chosen so as to give a minimum value of root-mean-square
error in a manner similar to that described above, Chi (1962).1 Now, our problem
reduces to the determination of F, and Fy; as functions of Mach number and
temperature ratio.

R

X

4.2. Determination of the F-function

Since the functions ¥, ¥, and ¢ are known [equations (28), (29) and (30)], and
since numerous data for compressible turbulent boundary layers [references
marked with a double dagger] have been collected, it might seem to be possible

* These are of course not the only equations which may be used; and they are certainly
not the simplest. They are used because they are consistent with a formula for the universal
velocity profile which is both simple and in good agreement with experimental data.

1t On a ¢; basis, the root-mean-square error would be about 2 9.

9-2



132 D. B. Spalding and S. W.Chi

to deduce the F, and Fy; functions solely from experiment. An attempt to do
this, however, soon showed that the data were too scanty and inaccurate to allow
success. Some theoretical guidance is therefore sought for the determination of
one of the functions. F, is the obvious choice.

In §3, it was shown that theories based upon the mixing-length hypothesis
of tables 1 and 2 gave the best prediction of all the previous theories; it was also
discovered that the corresponding methods lead to the following expression
for F,

£~ | [ wtpatas] . (31)

The expression for Fg,, by contrast, varies considerably from one theory to the
next. HKquation (31) has been adopted for the F, function in the present theory.

102
"
Cr i Rk SV A
T
Nw»u-._.j S
102 ‘
10° 10° 107 10® 10°
R,

Frcore 7. Comparison of equation (29) with uniform-property data, c; vs R,.

10°2 T 1T 7: ?
I
s
‘ﬁ\h__-_ﬁ_kﬁ_
1073
10° 10° 107 108 10°

R

&

Ficure 8. Comparison of equation (30) with uniform-property data, ¢, vs R,.

Evaluation of F, from equation (81) requires the density to be expressed as a
function of 2, where zis defined as #/u. This relationship may be derived from the
Reynolds analogy between energy and momentum transfer, modified for non-
unity Prandtl number in the following manner.

From the Reynolds analogy, we have

R—hYy u—ug

- 32
hE—hy  ug—ug’ (82)

where /% ig the stagnation enthalpy, « is the velocity in the z- direction, subscripts
G and S refer to the main stream and the fluid adjacent to the wall, respectively.
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Now ug =0, #°=c(T+3(y—1)MET;2?) for a perfect gas, A} = by = T,
where ¢ is the specific heat at constant pressure, and 7' is the temperature in
degrees absolute. Equation (32) can then be written as

TTe = (Ts/Te) +{1+ 3(y—1) MG — (Ts/Te)} 2 — 3y — 1) MG (33)

For the adiabatic-wall case, the coefficient of z of equation (33) is zero, and T is
equal to the adiabatic-wall temperature, 7,; . Hence

Toas/Te = 1+3(y— 1) Mg (34)
This holds for a Prandtl number of unity. For non-unity Prandtl number,
Tad,Sl/TG = 1+%7‘(’}/-— I)MC%: (35)

where 7 is the recovery factor. For gases of P & 0-7, measurements of recovery
factor by various investigators, Brevoort & Arabian (1958), Brinich (1961),
Kaye (1954), Hilton (1951), Slack (1952) and Stalder, Rubesin' & Tendeland
{(1950), showed that the value of recovery factor lies between 0-88 and 0-9; 0-89
is a fair mean of all measurements. Now equation (33) can be modified to satisfy
the boundary condition at the wall for the adiabatic-wall case, by writing

T|Te = (To/Te) +{1 +3r(y — 1) MG~ (T5/Te) 2 — dr(y — 1) M=%, (36)
where r = 0-89 for P ~ 0-7. For an ideal gas at constant pressure,
ploe = (/T (37)

On substitution of equation (36) into equation (37), there is obtained
plpe = [(Ts/Te) +{1 +3r(y = V) MG — (Ts|Ti: bz — 3r(y — 1) MG (38)

Hence from equations (31) and (38), we have

E={f o & I o
o [(Ts/TG) +{1+3r(y—1) ME~ (T5/Tg)} 2 — 3y — 1) ME=2

where r = 0-89. Equation (39) is the F, function which we have used.

4.3. Determination of the Ip; function
Though the theoretically derived expressions for Fj; are rather uncertain, they
can generally be written as
Frs = (pelps) (pslpe) (BIE), (40)

where E, is the value of & for uniform-property flow and is a constant. For

example,
(@) In the van Driest-I method, § = 1, # = E,, hence

Frs = (uglis) (PS/PG)%
= (Tg/Te)¥2  for pglps = (Te/Ts)"". (41)

() In the van Driest-II method, # = 0, £ = E,, hence

Frs = (nelts)
= (T/T)*"  for uglps = (Ta/Ts)"". (42)
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(¢) In other methods, e.g. those of Kalikman (1956), Kutateladze & Leont’ev
1961
(1981 B|B, = f(Ty[Ty), (43)

where 7T, is the value of the temperature at some point near the wall.
Hence such theories commonly lead to an expression for Fg; of the form

Fgs = (Ts/Te)* (Ty|Tg)", (44)

where p and n are two constants which are still indeterminate and are to be
determined from experiments as in the following paragraphs.

For the adiabatic-wall case, the temperature gradient at the wall is zero, and
so the temperature near the wall is approximately equal to 7;. Hence equa-

tion (44) reduces to Fpy = (Ts/T)P. (45)

Using the functions ¥;, ¥,, ¥ and F, of equations (28), (29), (80) and (39),
respectively, and all the collected experimental data for the adiabatic-wall case
(summarized in Appendix A and figures 1-3), we have determined the value of p
which gives the smallest root-mean-square value of (¢; oxp,— ¢y 1n)/Cs, 1n- This
value of p is — 0-702. Thus, for the adiabatic-wall case,

Frs = (Ts/Tg)~""2, (46)

where 74 is of course the adiabatic-wall temperature which is obtained by
equation (35).

The index ¢ can be found from the drag coefficient in the presence of heat
transfer. When there is heat transfer at the wall, the temperature gradient at the
wall has a finite value and it is plausible that the ratio of the temperature in the
vicinity of the wall to the wall temperature, Ty/Tg, is

Ty|Ts = 1+25{d(T | Ts)/d=]s, (47)

where zy = u}/uf, uf is the value of u* at the relevant distance from the wall. It
is probable that w3 is small so that uf is usually much larger than u}; hence
equation (47) can be written equally well as

Ty/Ts = {1 +[d(T]Ts)/dz] ). (48)
Now, by differentiation of equation (36), we obtain
ATIT (142 s To\ T
( az )s" (1+§T(’)’”‘1)MG—TG)TS7 (49)
1+ 3r(y—1) M3 N
then Ty|Tg =~ {1 + [v—%-wfﬁ—’ - 1]}
o Ts/Ta

= (Toa, s/ Ts)>. (50)

Substituting equation {50) into equation (44), we have
Frs = (Ts|Tg)? (Toa, 5/ Ts)% (51)
where p = —0-702 obtained above and g (= nzy) is a constant to be determined

empirically with the use of frictional-drag coefficient data in the presence of heat
transfer. A computer program was written which varied ¢ and minimized the
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root-mean-square value of (¢; oy, — ¢ 1n)/¢; 1 for all the available heat-transfer
experiments, p being given the value —0-702 as derived earlier. The minimum
root-mean-square error was found when ¢ was 0-772. The recommended Fp; is

accordingly Fry = (Tg/Te) "% (T q, s/ Ts)* 72, (52)

which reduces to equation (46) for the adiabatic wall.
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Freure 9. Comparison between theoretical and experimental F.c; vs FrsRy. x, experi-
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Ficure 10. Comparison between theoretical and experimental F ¢, vs Fg, R,. X, experi-
ments, adiabatic; O, experiments with heat transfer; —, theory equation (29).

4.4. Comparison of the present method with other theories and experiments

The root-mean-square value of (¢, ¢y, — ¢/, 1n) €7 (n fOr the present theory has been
calculated and inserted in table 6 in order to compare it with the other theories.
The present theory gives the lowest root-mean-square value, namely 9-9 9.
This is to be expected because we have derived Fp; directly from the experi-
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mental data. In figures 9-11, the experimental and theoretical F,c; vs Fp; R;,
F.c;vs Fp, R, and F,c; vs Fp, R, are plotted. The agreement between theory and
experiments is again satisfactory.

0-01

0

0-001
108 108 107 3% 107

Fgo Ry

Ficure 11. Comparison between theoretical and experimental F.¢; vs Fr,E,. X, experi-
ments, adiabatic; O, experiments with heat transfer; —, theory equation (30).

F.cs Fc FR5R5 Fp, R, Fcs FcEf FR5R5 Fg,R,

0-0010 0-001117 2:-878% 107 5-758x 10 0-0060 0-008205 233-0 5-679x 104
0-0015 0-001716 3:955x 105 4-610x10% 0-0065 0-009105 177-6 3-901 x 104
0-0020 0-002333 5425x 10¢ 4651 x 107 0-0070 0-010042 140-4 2-796 x 104
0-0025 0-002967 1-386x10¢ 9-340x 108 0-0075 0-011014 1144 2-078x 104

0-0030 0-003621 5030 2:778 x 106 0-0080 0-012016 95-62 1-592 x 10*
0-0035 0-004299 2283 1-062 x 10¢  0-0085 0-01304 92-49 1-251x 104
0-0040 0-005006 1208 4-828 x 105 0-0090 0-01409 70-91 1-006 x 104
0-0045 0-005747 716-0  2-492x 10®* 0-0095 0-01516 62-55 8-253 x 10°
0-0050 0-006526 462-3 1-417 x 105  0-0100 0-01624 5587 6-883 x 10?
0-0055 0-007345 3194 8:697 x 10¢ 0-0105 0-01732 50-46 5-826 x 103

Tasre 7. Values of F,c;, F s, FrgRyand Fg, R,

4.5. Summary of results

To facilitate calculation, the main results derived earlier in this section are
presented in the form of tables and figures. Table 7 gives the corresponding
values of F,c; and F,¢; vs Fp; Ry and Fp, R, table 8 gives the values of F, at
various M, and Tg/Tg, and table 9 gives the values of Fy, at various M, and
Ty/T,;. Values from tables 8 and 9 are plotted in figure 12 for convenience of use.

4.6. Recommended method of calculation

In the most common cases, the problem is to find the drag coefficient when the
Reynolds number, Mach number and temperature ratio are known. The pro-
cedure for solving this problem by use of the present method is as follows. First,
the value of F, is determined from table 8 or figure 12. Then the value of Fp; is
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Mg 0 1 2 3 4 5 6 7
TS/T\z;\
0-05 0-3743 0-4036 0-4884 0-6222 0-7999 1-0184 1-2759 1-5713
0-1 0-4331 0-4625 0-5477 0-6829 0-8628 1-0842 1-3451 1-6444
0-2 0-5236  0-3530 0-6388 0-7756  0-9584 1-1836 1-4491 1.7534
0-3 0-5989  0-6283 0-7145 0-8523 1-0370 1-2649 1-5337 1-8418
0-4 0-6662 0-6957 0-7821 0-9208 1-1069 1-3370 1-6083 1-9194
0-5 0-7286 0-7580 0-8446 0-9839 1-1713 1-4031 1-6767 1-9903
0-6 0-7873 0-8168 0-9036 1-0434 1-2318 1-4651 1-7405  2-0564
0-8 0-8972 0-9267 1-0137 1-1544 1-3445 1-5802 1-8589  2-1785
1 1-0000 1-0295 1-1167 1-2581 1-4494 1-6871 1-9684  2-2913
2 1-4571 1-4867 1-5744 1-7176 1-9130  2-1572 2-4472 2-7809
3 1-8660 1-8956 1-9836 2-1278  2-3254 2-5733  2-8687 3-2002
4 2:2500  2-2796 2-3678  2-5126  2-7117 2-9621 3-2611 3-6066
5 2-6180 2:6477 2-7359  2-8812 3-0813 3-3336 3-6355 3-9847
6 2:9747 3-0044 3-0927 3-2384 3-4393 3-6930 3-9971 4-3493
8 3-6642 3-6938 3-7823 3-9284 4-1305 4-3863 4-6937 5-0505
10 4-3311 4-3608 4-4493 4-5958 4-7986 5-0559 5:3657 5-7259
12 4-9821 50117 5-1003 5-2470 5-4504 5-7088 6-0204 6-3832
14 5-6208 5:6505 5-7391 5-8860 6-0898 6-3491 6-6621 7-0271
16 6-2500 6-2797 6-3683 6-5153 6-7196 6-9795 7-2937 7-6603
18 6-8713 6-9010 6-9897 7-1368 7-3413 7-6019 7-9170 8-2851
20 7-4861 7-5157 7-6045 7-7517 7-9564 82175 8-5334 8-9027
25 9-0000 9-0297 9-1184 9-2658  9-4711  9-7330 10-0505 10-4222
30 10-4886 10-5183 10-6071 10-7546 10-9602 11-2228 11-5415 11-9149
Mg 8 9 10 11 12 13 14 15
/TN,
005  1-9041 2:3738 2-6803 3-1233  3-6027 41186 46707 52591
0-1 1-9812  2-3552  2-7660 3-2134  3-6976 42180 4-7748  5-3680
0-2 2-0958  2-4756  2-8925 33462  3-8366 43636  4-9269  5-5267
0-3 2-1882  2-5723  2-9937  3-4522  3-9974 44792 50475  5-6523
0-4 2:2692 26569  3.0820 3-5443 4.0435 45794 5-1518  5-7608
0-5 23429  2-7336  3-1620  3-6276  4-1303 46697 52458  5-8584
0-6 2-4115  2-8049  3-2362  3-7048 4-2105 4-7531 53324  5-9483
0-8 2.5379  2-9360  3-3721 38459 4-3570  4-9051 54901  6-1117
1 26542  3-0562  3-4966  3-9748  4-4905 50434 56333  6-2599
2 31564 3-5725  4-0282 45228 50556 56263 6-2345  6-8801
3 3-5929 4-0184  4-4846 4-9904 5-5353 61187 6-7401  7-3993
4 3-9964  4-4290  4-9030  5-4176  5-9719 65653 7-1972  7-8673
5 43792  4-8174 52979 58196  6:3817  6-9833 76240  8-3033
6 47477 51905 56764  6-2041  6-7727 7-3814 80297 87169
8 54549  5-9050 63994  6-9368  7-5161 81365 8-7972 94977
10 61347  6-5904 7-0913 76363 82241 88539  9-5247 10-2359
12 6:7955 7-2556  7-7618 83129 89077  9-5452 10-2245 10-9449
14 74422  7-9058  8-4164 89727 95734 10-2174 10-9040 11-6321
16 8-0778  8-5444  9-0587  9-6194 10-2251 10-6748 11-5676 12-3026
18 87045  9-1737 96912 10-2556 10-8657 11-5204 12-2187 12-9598
20 93238 97952 10-3154 10-8832 11-4971 12-1562 12-8595 13-6059
25 10-8467 11-3225 11-8482 12-4227 13-0446 13-7128 14-4263 15-1841
30 12-3418 12-8209 13-3509 13-9305 14-5586 15-2339 15-9556 16-7225
TasrE 8. Values of F, at various Mg and Ts/7T¢
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Mg 0 1 2 3 4 5 6 7
Ts/ToN,

0-05 82-7405 93-8950 125-3092 173-1153 234-1638 306-3480 388-2642 4789229
0-1 29-7852 33.8006 45-1092 62-3185 84-2949 110-2803 139-7684 172-4040
0-2 10-7221 12-1676 16:2385 22-4336 30-3447 39-6990 50-3142  62-0625
0-3 58983 66934  8-9328 12-3407 16-6926 21-8384¢ 276779 34-1406
0-4 3-8598  4-3801  5-8456  8:0757 10-9236 14-2910 181123 22-3414
0-5 27779 31524 42071  5-8121  7-8618 10-2853 13-0355 16:0792
0-6 2-1233  2.4095  3.2157  4-4424  6-0091  7-8615  9-9636 12-2900
0-8 1-3895  1-5768  2-1043  2-9071  3-9323 51445 65201  8-0425
1 1-0000  1-1348  1-5145  2-0923  2-8301  3-7025  4-6926  5-7883
2 0-3600  0-4085  0-5452  0-7532 1-0188  1-3328  1-6892  2-0837
3 0-1980  0-2247 02999  0-4143  0-5604  0-7332  0-9292 1-1462
4 0-1296  0-1471 01963  0-2711  0-3667  0-4798  0-6081  0-7501
5 0-0933  0-1058  0-1412  0-1951  0-2639  0-3453  0-4377  0-5308
6 0-0713  0-0809  0-1080  0-1491  0-2017  0-2639  0-3345  0-4126
8 0-0466  0-0529  0-0706  0-0976  0-1320  0-1727 02189  0-2700
10 0-0336  0-0381  0-0508  0-0702  0-0950  0-1243 01575  0:1943
12 0-0257  0-0291  0-0389  0-0537  0:0726  0-0950  0-1204  0-1485
14 0-0204  0-0232  0-0310 0-0428  0-0579  0-0757  0-0959  0-1183
16 0-0168  0-0191  0-0254  0-0351  0-0475  0-0622  0-0788  0-0972
18 0-0141  0-0160  0-0214  0-0295  0-0400 0-0523  0-0662  0-0817
20 0-0121  0-0137  0-0183  0-0253  0-0342  0-0447  0-0567  0-0700
25 0-0087  0-0099  0-0132  0-0182  0-0246  0-0322  0-0408  0-0503
30 0-0066  0-0075  0-0101  0-0139  0-0188  0-0246  0-0312  0-0385

\A\Ia 8 9 10 11 12 13 14 15
TS/VYG\\

0-05 577-5949 683-7162 796-8344 916-5768 1042-629 1174-722 1312:620 1456-116
0-1 207-9243 246:1261 286-8467 329-9519 375-3286 422-8798 472-5207 524-1767
0-2 74-8492 88-6012 103-2599 118-7770 135-1119 152-2295 170-0993 188-6946
0-3 41-1745 487395 568032 65-3392 74-3250 83-7414 93-5716 103-8009
0-4 26-90444 31-8949 37-1718 42-7577 486380 54:8000 61-2328 67-9268
0-5 19-3920 229549 26:7527 30-7729 35:0050 39-4308 44-0696 48-8873
0-6 14-8221 17-5454 20-4482 23-5210 26-7557 30-1455 33-6842 37-3665
0-8 9-6995 11-4816 13-3812 153020 17-5088 19-7271 22-0428 24-4525
1 6-9808 82634  9-6305 11-0777 12:6012 14-1977 15-8643 17-5986
2 2-5130  2-9747  3-4668  3-9878  4-5362  5-1109  5-7109  6-3352
3 1-3824  1-6364  1-9071  2-1937  2-4954  2-8115  3-1416  3-4850
4 0-9046  1-0708  1-2480  1-4355 1-6330  1-8398  2:0558  2:2806
5 0-6511  0-7707  0-8982 1-0332 1-1752 1-3241 14796  1-6413
6 0-4976  0-5891  0-6862  0-7897  0-8983  1-0121 1-1309  1-2545
8 0-3256  0-3855  0-4493  0-5168  0-5878  0-6623  0-7401  0-8210
10 02344 02774 03233  0-3719  0-4231  0-4767  0-5326  0-5909
12 0-1791  0-2121  0-2471  0-2843  0-3234  0-3643 04071  0-4516
14 0-1427  0-1690  0-1969  0-2265  0-2576  0-2003  0-3244  0-3598
16 0-1172  0-1388 01617  0-1860  0-2116  0-2384  0-2664  0-2955
18 0-0985  0-1167  0-1359  0-1564  0-1779  0-2004 02239  0-2484
20 0-0844  0-0999  0-1164  0-1339  0-1523 01716  0-1917  0-2127
25 0-0607  0-0719  0-0838  0-0964  0-1096  0-1235  0-1380  0-1531
30 0-0464  0-0549  0-0640  0-0737  0-0838  0-0944 0-1055  0-1170

TABLE 9. Values of Fr; at various Mg and T's/T'¢
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determined from equation (52), table 9 or figure 12, and where necessary the
value of Iy, is obtained from the equation

Fry = FgslF,. (25)
Finally, by using the input value of R; (or R,) and the values of Fy, (or Fy,) and
F, above, ¢ or ¢; can be obtained from table 7 or figures 9-11.
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Freure 12. Chart of constant #, and Fgs lines in T's/T¢ and Mg co-ordinates.

The above calculation can be performed in a few minutes with an accuracy of
19. The latter is of course well within the limit of experimental accuracy
at present.

5. Conclusions

In conclusion, the results of this work can be summarized as follows.

A procedure has been developed semi-empirically for predicting the drag
coefficient on a smooth surface of zero stream-wise pressure gradient at various
Reynolds numbers, Mach numbers and ratios of surface temperature to stream
temperature.

The extent to which the procedure correlates the existing experimental data
can be judged by inspection of figures 9—11, whereby it must be remembered that
the experiments have been carried out in several entirely different pieces of
apparatus and are not of high or uniform accuracy. The correlation is better than
that given by any of the other existing theories as can be seen from table 6. The
value of the present procedure is that it does not make use of the more arbitrary
assumptions of earlier theories; it lets the data speak for themselves.

The procedure is simple and quick to use in engineering calculations and its
accuracy is only limited (at the present time) by the accuracy of experimental
data from which it is in part derived.

The necessary auxiliary functions have been tabulated (tables 7-9) and
plotted in figures 9-12 for ready reference. However, it must be remembered



140 D. B. 8palding and 8. W.Chi

that experiments have not yet been carried out over the whole range of conditions
covered by the tables and figures. Figure 4 shows how remarkably restricted has
been the range of experimental conditions so far.

The procedure is capable of greater refinement when more accurate experi-
mental data are available, say by modification of the Fy; function. It can also be
extended to include mass transfer (Spalding 19625).

Finally, it should be noted that the calculation procedure which has been
recommended is based on no new physical hypothesis. The expression recom-
mended for F, implies the assumption of one or other variety of the mixing-length
theory; but the expression for Fg; is entirely empirical. It may indeed be rather
hard to find a physical hypothesis to fit the empirically derived Fy; function; for,
whereas the exponent of (T/T;) in equation (52) has a sign and magnitude which
allows us to ascribe its effects to the role of the viscosity near the wall, the sign of
the exponent of (7, ¢/Ts) is quite unexpected. This point certainly deserves
explanation. However, we have thought it better at the present stage to provide
quantitative results against which old and new hypotheses can be tested than to
advance such hypotheses ourselves.
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Appendix
Summary of the methods of evaluating Ry integral, approximations A and B,
appearing in tables 1-4 :
Approximate analytical (4)

Taking equation (3) of § 2.2, for example, we have

7. +2 z
R, = ﬂ_séuif ¢32(1 —z)exp {KuG f ¢d2} dz. (3)
rel Jo 0

As the magnitude of the integrand is small at small z,

f:gbdz

is replaced by Nz, where

1
the equation (3) now becomes
R, = 'MSAuG f #32(1 —z) exp (KNufz)dz. (A1)

On integrating equation (A 1) by parts twice, there is obtained

Ry = :Sua [¢3~ 1—2z)exp (KNu}z)

—f [¢3(1 — 22) + 2(1 —z) (dp?/dz)] exp (KNugz) dz] '
0 0

= b= [¢3 exp (KNugz )] + smaller terms
G 0

1o KNE
X - 'us—?%—ex (KNutz) (A2)
¥ 4o KEN2 P G-
Hence Ry = 1o N?KE exp {AN (chs . (A3)

Approximate analytical (B)

Taking equation (3) of §2.2, for example, we have

+2 r1 2 A
R, = MJ $*2(1 —2) exp(KuZ; f ¢dz)dz. (3y
reli o 0
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Equation (3) is re-written as
k2 1 1 z
By = gS—Au—Gexp (Kugf ngdz)f P32(1 —2)exp (Kugf ¢dz) dz. (B1)
roli 0 0 1

Replace exp (Kug f ’ ngdz) by 2z,
1

where % is so chosen that the gradient is the same, then, on differentiation, we
have Ku} ¢ = n. Now equation (B 1) can be re-written as

+2 1
B z’u—si{u—aexp (Kuzgf ngdz) ( P31 —z)z"dz
rel 0

3 77 1
ﬂSiGIIxE’ - exp (Iqu fo ngdz) fo (zn 1 —2n+2)dz

1
NePE Kug exp (Kugf ¢dz)

= g (B 2)
polB(KPgul +2) (Kpuf +3)]
As Ku} ¢ > 3 in general, equation (B 2) can be approximately written as
HsPe Pa !
By = 4o KE exp (Aqu ¢dz) . (B3)
_ Hs Pe 2TG)’}} )
Hence By = i KE exp{ (f ¢dz) (chS (B4





